PTC announced that it has been named a leader in the Industrial IoT software platformsmarket for its ThingWorx Industrial Innovation Platform, according to a new evaluation from Forrester Research. In the Forrester evaluation, entitled “The Forrester Wave: Industrial IoT Software Platforms, Q3 2018,” PTC was the among the top five highest ranked in the “Current Offering” category and among the top four in the “Strategy” category.
Forrester evaluated the current offering, strategy, and market presence of PTC and 14 other vendors. Each company was evaluated according to a comprehensive set of 24 criteria, grouped into three high-level categories: current offering, strategy, and market presence. Participating vendors all had a significant focus on the industrial domain and its use cases, native support for key industrial protocols, and a strong international presence. Within that context, PTC was named one of the leaders by Forrester.
With few exceptions, the leaders had a public cloud capability, analytics capabilities, and API-led integration. Some companies, such as C3 IoT are focusing on the analytics part of Industrial IoT, while leaving device connection to companies such as Amazon Web Services or Microsoft Azure, although C3 IoT is a partner of both AWS and Azure.
The following graphic shows how Forrester perceives the industrial IoT platform market based on its criteria:
Regarding PTC’s standing in the evaluation, Forrester noted: “PTC fuses device connectivity strength with augmented reality vision . . . and the company offers rich capabilities spanning design, manufacture, service, and operations, combining these in accessible end-user applications.” (more…)
If you think there are a lot of industrial robots out there, you’re right. But, by 2019, more than 1.4 million new industrial robots will be installed in factories around the world – that’s the latest forecast from a report published by the International Federation of Robotics (IFR).
The number of industrial robots deployed worldwide will increase to around 2.6 million units by 2019. That’s about one million units more than in the record-breaking year of 2015.
Broken down according to sectors, around 70 percent of industrial robots are currently at work in the automotive, electrical/electronics and metal and machinery industry segments. In 2015, the strongest growth in the number of operational units recorded was registered in the electronics industry, which boasted a rise of 18 percent. The metal industry posted an increase of 16 percent, with the automotive sector growing by 10 percent.
New Technology Enhances Industrial Robots
The US is currently the fourth largest single market for industrial robots in the world. Within the NAFTA area (US, Canada, and Mexico), the total number of newly installed industrial robots rose by 17 percent to a new record of some 36,000 units (2015). The leader of the pack was the US, accounting for three-quarters of all units sold where 5 percent growth was recorded. With a comparatively much smaller number of units, the demand in Canada increased by 49 percent (5,466 units), while that in Mexico grew by 119 percent (3,474 units). With a stable economic situation, it is expected that North America will see average annual growth of 5 to 10 percent in sales of robots through 2019.
It’s almost the end of November, so with just over a month left of this year, it’s not too early to start thinking about what we’ll be covering in 2018. The calendar below reflects what we regard as some of the most important topics today in design and manufacturing, as well as feedback from our readers and other supporters requesting content.
The main theme for each month will be covered in an extended article or series of articles so that the topic can be covered more comprehensively.
We’ll also be covering some of the major MCAD events throughout the year, reporting what we see and hear from vendors, partners, and attendees. All of the events we attend will include daily written coverage and Tweets throughout event days, as well as video and audio interviews, and podcasts.
If you have any thoughts of topics you would like to see covered in 2018, feel free to contact me at jeff@ibsystems.com or 719.221.1867.
We look forward to an exciting 2018 and providing you with the MCAD content you want most for improving your design, engineering, and manufacturing processes.
Keep MCADCafe.com your source for all things MCAD because 2018 is going to be a great year!
2018 MCADCafe Editorial Calendar of Monthly Topics
January 2018 – Blockchain in Manufacturing
February 2018 — Cloud Computing with MCAD Applications
The spring season seems to be the time of year when many companies and professional organizations hold their annual conferences, and this spring was no exception. I’ve attended several events in the past few weeks and noted striking differences of two of them — divergence at RAPID + TCT 2017 and convergence at LiveWorx 17 — and that’s how I want to wrap up our spring 2017 trade event tour (although I have one more next week).
Divergence at RAPID + TCT 2017
Diverge (dih-vurj, dahy-): Tomove,lie,orextendindifferentdirections fromacommonpoint;branchoff. To turn aside or deviate, as from a path, practice,or plan.
3D printing/additive manufacturing (AM) are about making something digital into something analog. Although the technologies are 30+ years old, many things are still being done as they were in the beginning, such as building 3D models, exporting STL data, etc. However, several aspects of AM are diverging from its historical roots.
For example, the first AM materials were polymers, and they still account for ~85% of all materials used, but metals are coming on strong and now account for about 14% of the materials used. The range of materials being used, though, is constantly increasing — everything from ceramics to composites to food to living tissue.
Panel Discussion at RAPID + TCT 2017
Volume quantities are also diverging from one-offs or small quantities for rapid prototyping to real production quantities where the costs can be justified when costs go down and production speed goes up.
Just about a year ago, PTC received the IoT Innovation Vendor of the Year Award from marketing analytics and consulting firm Compass Intelligence at the 2016 International Consumer Electronics Show (CES). The Compass Intelligence Annual Awards recognize the best Internet of Things (IoT) products and services offered in the market during the past year.
In the view of the award presenting organization, PTC had become a leading provider of technology that enables its customers to realize the value inherent in the Internet of Things. As well, in their opinion, PTC’s CEO, Jim Heppelmann, had become a major thought leader, having coauthored two seminal HBR articles that describe the implications of the IoT and offering companies a blueprint to get started on their own IoT journeys.
This week PTC announced that it had been named Industrial Internet of Things Company of the Year by IoT Breakthrough, an independent organization dedicated to recognizing IoT products and companies that stand out in the industry. PTC also received the IoT Breakthrough award for “Industrial IoT Solution of the Year” for its Kepware KEPServerEX industrial connectivity software.
Cloud computing is helping more manufacturers become more agile and competitive, but it is by no means the only aspect of improving manufacturing practices. There are actually several technologies involved with making connected smart manufacturing a reality.
That’s just part of the findings of the 2016 State of Manufacturing study written by Plex Systems and based on survey responses from approximately 200 manufacturers.
Last year’s State of Manufacturing Technology report validated that the cloud is one of the primary catalysts for technology usage overall. Fundamentally, the cloud reduces the IT cost and personnel burden for core systems and administration, opening up resources for greater innovation and much needed focus on higher-value technology projects. The core capabilities inherent in modern cloud solutions—mobility, ease of integration, configurability, and the elimination of upgrade cycles— also make it easier and less expensive for manufacturers to connect their people, equipment, materials, suppliers, and customers.
This year’s survey discusses an emerging trend: connected manufacturing. Organizations are building on the connectivity of the cloud and leveraging integration that extends from mobile devices to plant floor equipment, customers to suppliers, and people to materials. These capabilities are providing a new application foundation for everything from agile process design to enterprise supply-chain management, innovation, and product quality.
Well, it was only a matter of time before what happened last Friday happened. I’m talking about the Distributed Denial of Service (DDoS) incident on server farms of a key internet firm, Dyn, that repeatedly disrupted access to major websites and online services including Twitter, Netflix,GitHub, and PayPal across the U.S. and Europe last Friday. The White House called the disruption malicious and hacker groups have claimed responsibility, though their assertion is not yet verified.
The event involved multiple denial-of-service (DoS) attacks targeting systems operated by Domain Name System (DNS) provider, Dyn, that rendered major internet platforms and services unavailable to large swaths of North America and Europe.
“The complexity of the attacks is what is making it so difficult for us,” said Kyle York, Dyn’s chief strategy officer. “What they are actually doing is moving around the world with each attack.”
As a DNS provider, Dyn provides to end-users the service of mapping an Internet domain name—when, for instance, entered into a web browser—to its corresponding IP address. The DDoS attack involved tens of millions of DNS lookup requests from a large number of IP addresses. The activities are believed to involve a botnet coordinated through a large number of IoT devices that had been infected with the Mirai malware.