Altair, a company that promotes and enables “Simulation-Driven Innovation” has acquired SIMSOLID, a company founded by asking a simple question: “Why does the geometry used in the Design and Structural Simulation worlds have to be so different?”
SIMSOLID works on full-fidelity CAD assemblies to provide fast, accurate, and robust structural simulation without requiring geometry simplification, cleanup, or meshing. Its underlying technology is based largely on the work of Dr. Victor Apanovitch, a former professor at Belarus Polytechnic University and the cofounder of SIMSOLID Corporation. (more…)
A day before its official release, I spoke with a couple of Autodesk Fusion 360 staffers, Daniel Graham, Fusion 360 Senior Product Manager and Bill Danon about what to expect in the newest update.
The biggest news was the inclusion of simulation capabilities in Fusion 360 – at no additional cost – at least not for now or the foreseeable future. That in itself is pretty significant. Of course, there were some other improvements and enhancements, but let’s start with simulation
Simulation in Fusion 360 lets you perform linear stress analysis that assumes linear elastic behavior and infinitesimally small displacements and strains, as well as modal analysis for study the dynamic properties of structures undergoing vibration. With Fusion 360 simulation you can define materials, add constraints, and add loads to solve for weaknesses in assemblies, within the design environment.
When in the Fusion 360 design environment, a workspace labeled “SIM” under the workspace switcher is where you choose from two types of simulation studies: Static Stress and Modal Frequencies.
There are a number of simulation/analysis software products available for conducting motion and FEA studies. However, the ability to conduct them both, as well as optimizing assemblies is a tall order, especially for mere mortals and non-CAE specialists. With a relatively short learning curve, for this evaluation SimWise 4D proved its mettle for handling motion, FEA, and optimization in one comprehensive package.
What is known today as SimWise 4D began when Design Simulation Technologies (DST) acquired a license from MSC Software Corp. to the MSC.visualNastran 4D (vn4D) product. That software traces its roots to the Working Model 3D product developed by Knowledge Revolution, which was acquired by MSC in 1999, extended to include FEA capabilities, and renamed Working Model 4D.
Not just resting on its cash reserves or other recent acquisitions, Autodesk announced that it has completed the acquisition of Firehole Technologies (DBA Firehole Composites), a privately held company that specializes in design and analysis software for composite materials. Through this acquisition, Autodesk will expand its analysis software portfolio to work with light, strong, and complex composite materials. Firehole Composites is based in Laramie, Wyoming, also the home of the University of Wyoming, and a town with an incredibly low unemployment rate of 3.4%.
“As manufacturers move to more complex material such as light weight composites, new simulation technology is required to predict and optimize the performance of these materials. This acquisition will enable Autodesk to deliver this technology to a broad spectrum of design and engineering industries,” said Buzz Kross, senior vice president for Design, Lifecycle and Simulation products. “The Firehole team will add significant expertise in next generation materials and non-linear analysis, as well as industry-leading technologies that strongly complement our solutions for structural, thermal and plastics analysis.”
Engineered composites are complex materials made from two or more materials with widely different physical and/or chemical properties. When combined, the constituents produce a material with characteristics much different than the individual components. Interestingly, though, (and this adds to the mystique behind composites), the individual components remain separate and distinct within the finished structure. Even though it’s been around a long time, today, still the most common composite material is concrete. Because composites are complex materials, simulating and analyzing them and their behavior is a very computationally demanding proposition.
Check out the video for CompositePro for FEA that demonstrates some of the tools availble to support composite finite element analysis process. Among other things, CompositePro can be used to:
Determine ply-level or laminate-level material properties for 2D shell or 3D solid element analyses
Investigate complex failure modes of stuctures such as tubes or sandwich panels to understand when they will fail
Autodesk says it intends to sell and support the existing Firehole Composites product line, as well as integrating the composites analysis technology more tightly with Autodesk products. No surprise there, especially the latter. As usual, and not unexpectedly, terms of the transaction were not disclosed.
There are several types of CAE-related manufacturing applications for optimizing the use of materials, tools, shape and time, and machine layout by simulating and analyzing specific manufacturing processes. However, probably the most common method for getting CAE into a manufacturing environment, finite element analysis (FEA) for parts and tooling.
FEA is a numerical technique for calculating the strength and behavior of structures. It can be used to calculate deflection, stress, vibration, buckling, and other behaviors. Typical applications for FEA would include minimizing weight and/or maximizing the strength of a part or assembly.
In FEA, structures are divided into small, simple units, called elements. While the behavior of individual elements can be described with a relatively simple set of equations, a large set of simultaneous equations are required to describe the behavior of a complex structure. When the equations are solved, the computer and FEA tool displays the physical behavior of the structure based on the individual elements.
FEA tools can be used for innovating or optimizing mechanical designs. Optimization is a process for improving a design that results in the best physical properties for minimum cost. However, optimization using FEA tools can prove difficult, because each design variation takes time to evaluate, making iterative optimization time consuming. On the other hand, FEA tools can really shine when seeking new and unique ways of designing things – the most crucial aspect of innovation.
Before committing to any CAE tool, however, be sure it is compatible with your existing CAD and CAM tools, the types of parts and assemblies you design, and your general workflow.
Keep in mind that there is no one tool that serves everyone’s needs. Some will be interested fluid flow, others in structural mechanical properties, and still others in thermal issues. Get input from as many groups within your organization as are likely to benefit from CAE tools. When evaluating CAE tools, make sure you evaluate them with your models; not just models supplied by a vendor. That way, you’ll be able to objectively evaluate different CAE tools that best suit your needs in your environment, and not be overly swayed by what a vendor wants you to see. Obviously, it’s in your best interest for objectivity to use the same parts or assemblies with different CAE tool vendors.
Finally, a word of caution. Don’t expect CAE tools to solve all your problems with all of your parts. Like CAD and CAM tools, they should be used in conjunction with experience and common sense to arrive at optimized and innovative designs. Calculating return on investment when using CAE tools can be as complicated as performing analyses on complex assemblies. However, you can probably count on estimating ROI from time saved during the design process, lower material costs, reduced numbers of physical prototypes and ECOs, and possibly greatly reducing the number of product liability lawsuits. CAE tools cannot perform miracles by themselves because they still require a significant human element, but employed wisely, will likely improve your workflow and provide tangible benefits.
By now you’ve almost certainly got MCAD and CAM tools as a vital component of your business. With them you’ve hopefully seen how they have positively impacted the way you work, as well as the way you interact with your customers and vendors. Looking for a way to further increase your productivity, while continuing to optimize your processes?
If you haven’t already, it’s time you considered integrating tools into your workflow for simulation and analysis of virtually any aspect of the product development lifecycle. Although known in some circles as computer-aided engineering (CAE) tools, that acronym has largely been replaced by simulation and analysis, although they all mean roughly the same thing.
It wasn’t all that long ago that CAE was relegated to the latter stages of the design and manufacturing (product development) process — too many times as an afterthought. This is changing, though, on two fronts. First, realizing the potential payback in terms of reduced production time and getting it right the first time, many design and manufacturing organizations have moved CAE tools further forward in the development process. Some are even using them in the earliest stages of design, the conceptual phase. Second, software vendors are getting better at integrating CAE with their CAD and CAM tools.
A major roadblock to CAE’s wider acceptance has been the perception that only high-priced analysis specialists (math PhDs?) could understand and work with CAE tools. While specialists are required for some of the high-end tools for performing complex analyses, there are many CAE tools now on the market that require just some basic training and practice to become proficient in a relatively time.
Admittedly, all CAE tools require a technical mindset, but you don’t necessarily have to have a doctorate in math anymore to run many types of analysis and simulation. It really just requires familiarity with the interface of a CAE tool for creating and loading digital models, and then reviewing and interpreting the results. A really nice thing is that many CAE tools now work from within the familiar UI of your CAD or CAM tool. Finally, computer prices that continue to drop have helped popularize CAE tools, because some of them require a lot computing horsepower when working with large assemblies or very precise engineering constraints.
If this all sounds easy, it is to a point, but there are some caveats. That’s what we’ll discuss next time, as well as the most commonly used CAE tool — FEA.