During the most recent SolidWorks World we saw some presentations and live demos of some amazing flying robots, and we discussed them last month. Thanks to the Society of Manufacturing Engineers (SME), we came across another stunning example of flying robots. This time, though, at a much smaller scale as printed circuit micro-electro-mechanical systems (PC-MEMS).
Dubbed the Monolithic Bee (Mobee), and created by engineers at Harvard, a unique layering and folding process enables the rapid fabrication of not just these flying microrobots, but potentially a broad range of other electromechanical devices.
The new fabrication technique was inspired by pop-up books and origami, allowing clones of robotic insects to be mass-produced by the sheet.
In prototypes, 18 layers of carbon fiber, Kapton (a plastic film), titanium, brass, ceramic, and adhesive sheets have been laminated together in a complex, laser-cut design. The structure incorporates flexible hinges that allow the three-dimensional product—2.4 millimeters tall—to assemble in one movement, like a pop-up book.
The entire product is approximately the size of a U.S. quarter, and dozens of these microrobots can be fabricated in parallel on a single sheet.
“This takes what is a craft, an artisanal process, and transforms it for automated mass production,” said Pratheev Sreetharan, who co-developed the technique with J. Peter Whitney at the Harvard School of Engineering and Applied Sciences (SEAS).
Sreetharan, Whitney, and their colleagues in the Harvard Microrobotics Laboratory at SEAS have been working to build bio-inspired, bee-sized robots that can fly and behave autonomously as a colony. Appropriate materials, hardware, control systems, and fabrication techniques did not exist prior to the RoboBees project, so each must be invented, developed, and integrated by a diverse team of researchers.
Although tiny robots can now be built by slightly bigger robots, designing how all of the layers will fit together and fold is still a very labor-intensive human task. Standard computer-aided design (CAD) tools, typically intended for either flat, layered circuit boards or 3D objects, do not yet support devices that combine both, but that is changing.
However, once a design is complete, fabrication can be fully automated to highly accurate and precise standards.
The Harvard Office of Technology Development is now developing a strategy to commercialize this technology. The work was supported by the U.S. Army Research Laboratory, the National Science Foundation (through the Expeditions in Computing program), and the Wyss Institute.
Admittedly, the video is more about fabricating the Mobee than it is about it actually flying, but it’s still some interesting stuff. If we come across video that shows the Mobee flying maneuvers, we’ll post it.