In an era where digital transformation dictates the pace of innovation across all sectors, Nvidia’s Omniverse platform emerges as a critical tool in realizing the full potential of industrial digitalization. This comprehensive ecosystem, supported by powerful collaborations with tech giants like Microsoft, as well as industry leaders Ansys and Siemens, is setting new standards for the creation, development, and operation of digital twins across a broad spectrum of industries.
A Unified Vision with Microsoft and Nvidia
The partnership between Microsoft and Nvidia to integrate Omniverse Cloud APIs into Microsoft Azure signifies a monumental step towards advancing the global manufacturing industry’s digital transformation. This collaboration leverages Azure’s robust cloud infrastructure alongside Omniverse’s advanced digital twin technologies, enabling industries to enhance design, engineering, and operational efficiencies through real-time collaboration and AI-driven insights.
The integration facilitates a seamless flow of data across diverse tools and applications, empowering teams to visualize complex processes in physically accurate digital environments. This unified approach not only accelerates decision-making processes but also fosters innovation by enabling the simulation of products and manufacturing processes long before they materialize in the physical world.
Recently, Aras announced a strategic OEM partnership with ANSYS for enabling the digital thread and digital twin that includes licensing the Aras Innovator platform technology intended to provide a new generation and method of digital engineering practices. The partnership will enable better processes and data management of simulations for digital thread traceability across the product lifecycle.
ANSYS Minerva will leverage the Aras Innovator platform technologies such as configuration management, PDM/PLM interoperability, API integration and add simulation-specific capabilities for delivering scalable and configurable products that connect simulation and optimization to product engineering — creating new ways of exploring and improving product performance.
Aras for ANSYS AIM — An Example of How Aras and ANSYS Technologies Work Together
Engineering and manufacturing organizations are increasingly leveraging simulation throughout the product lifecycle to interoperate with their existing PLM, ALM and ERP applications. Additionally, customers are addressing complexity challenges with data and process management, traceability, and availability of simulation results across the product lifecycle.
Recently, ANSYS, known for its engineering simulation software, and MachineWorks known for its machining and verification software signed an agreement to expand the use of Polygonica Polygon Modeling Software toolkit throughout the ANSYS organization.
Polygonicais a polygonal solid modeling toolkit for processing polygon mesh and is the creator of MachineWorks.
Polygonica carries out a wide range of geometric operations on polygon mesh models such as automatic solid healing, fixing self-intersections and Boolean operations. Other algorithms in Polygonica allow remeshing, simplification, offsetting and point cloud manipulation.
Polygonica is built on MachineWorks’ core technology for material removal and machine simulation, and has a wide range of applications for many sectors, including additive manufacturing/3D printing, where solving complex polygon modeling problems is required when handling defective models with vast numbers of polygons.
Polygonica is used in ANSYS Discovery Live software, ANSYS’ relatively new tool that enables fast computation of CAE analysis results using the power of local GPUs. ANSYS Discovery Live shortens the feedback loop between design and analysis and lets product designers see relevant results immediately during the conceptual design process.
Interview with ANSYS at IMTS 2016
Even though we’ve been told by a number of software vendors for several years now to use engineering simulation and analysis at the earliest stages of product development, relatively few companies have heeded the advice and actually done so. In many cases, it’s still design, break, repeat in a cycle that gets very expensive quickly trying to achieve optimized design goals. Even with all the insistence and chiding from the simulation folks, I’d estimate the percentage of design work that includes simulation early in the process as somewhere between 20-25%, although that may be a bit on the high side.
With ANSYS Discovery Live, ANSYS hopes it will break and change that cycle.
Even though we’ve been told by a number of software vendors for several years now to use engineering simulation and analysis at the earliest stages of product development, relatively few companies have heeded the advice and actually done so. In many cases, it’s still design, break, repeat in a cycle that gets very expensive quickly trying to achieve optimized design goals. Even with all the insistence and chiding from the simulation folks, I’d estimate the percentage of design work that includes simulation early in the process as somewhere between 20-25%, although that may be a bit on the high side.
This week, ANSYS presented a technology preview of what it hopes will break and change that cycle with what it calls ANSYS Discovery Live .
With it, engineers can rapidly explore design options and receive accurate simulation results with technology using engineering simulation to make digital exploration available to all engineers so they can design better products faster and more economically.
That’s a pretty confident and heady statement, knowing that several other vendors have attempted the roughly same thing with widely varying degrees of success. However, ANSYS has an interesting and innovative approach for reaching its goal — exploiting GPUs because they can handle massively parallel operations.
ANSYS readily admits that while Discovery Live is a means of bringing simulation to the engineering masses earlier in the development process, it doesn’t pretend to do everything for everybody, and there will always be a place for engineering simulation specialists for deeper dives. Discovery Live is targeted to early design exploration and to users new to simulation. Because it is not a solution for every simulation problem, Discovery Live does not compete with other more advanced ANSYS products, such as AIM, but data from it can be exported for more further study.
ANSYS, known for its engineering simulation software, announced this week that it has acquired Computational Engineering International Inc. (CEI), the developer of a suite of products for analyzing, visualizing, and communicating simulation data. Terms of the deal, which closed earlier this month, were not disclosed.
The merger of the physical and digital worlds is resulting in products that with an overwhelming number of design decisions compared to previous product generations. That is something only engineering simulation can feasibly provide in a timely and cost-effective fashion. Users need to quickly analyze the huge amount of data that simulation generates to make the best engineering and business decisions.
Headquartered in Apex, North Carolina, CEI has 28 employees and more than 750 customers around the world. Its flagship product, EnSight, is used for analyzing, visualizing, and communicating simulation data in terms that mere mortals can comprehend.
“CEI has a long track record of success thanks to fantastic technology built by a world-class team,” said Mark Hindsbo, ANSYS vice president and general manager. “By bringing CEI’s leading visualization tools into the ANSYS portfolio, customers will be able to make better engineering and business decisions, leading to even more amazing products in the future.” (more…)
For only the fourth time since its inception, earlier this week ANSYS announced a leadership succession plan with a new CEO. James E. Cashman, who has served as ANSYS’ CEO since 2000, will step down as CEO and become Chairman of the Board of Directors effective January 1, 2017. Dr. Ajei S. Gopal, a technology industry veteran who has served as a member of the ANSYS Board since 2011, has been appointed President and CEO effective immediately and will continue to serve on the Board. Dr. Gopal will become CEO on January 1, 2017. Ronald W. Hovsepian, who currently serves as Chairman of the ANSYS Board, will assume the role of Lead Independent Director as part of this transition.
This week Siemens announced that it was hitching a new car to its acquisition train: CD-adapco. With a purchase price $970 million, CD-adapco is a global engineering simulation company with software that covers a wide range of engineering disciplines including fluid dynamics, solid mechanics, heat transfer, particle dynamics, reactant flow, electrochemistry, and acoustics. It is probably best known for its combustion engine simulation capabilities.
Established in 1980 and still controlled by its founders, the company has about 900 employees and approximately $200 million in annual revenue and an annual growth rate of 15 percent for the past five years, according to its website. Its main competitor in engine simulation software is Ansys.
ANSYS, a major provider of engineering simulation (CAE) software, announced that it has acquired substantially all the assets of Delcross Technologies, a developer of computational electromagnetic simulation and radio frequency system analysis software.
The acquisition is intended to let ANSYS users to understand how antennas interact within their operating environments and how this behavior affects the system’s overall ability to transmit and receive data without interference. As usual, and not surprisingly, terms of the deal, which closed earlier this week, were not disclosed.
So, what does this really signify? Simulating not just large-scale antenna systems, such as those found in giant aerospace projects (which will surely go on after the acquisition), but on a much, much smaller scale for Internet of Things (IoT) projects.
Although it’s almost a year old, below is a video presentation (click on the image) from Delcross Technologies for modeling installed performance of antennas on electrically large platforms, such as aircraft and automobiles.
Well, another CAD company is snapped up, and the technical software consolidation train continues to roll on. That in itself is not too surprising. What is, though, is that a CAE company has acquired a CAD company.
ANSYS announced earlier today that it has acquired SpaceClaim Corp. for a purchase price of $85 million in cash, plus retention and an adjustment for working capital. The transaction closed on April 30, 2014.
ANSYS SpaceClaim Overview
From the beginning, SpaceClaim said it offered a 3D modeling tool that could be used by more than just CAD experts during the product development process (and this is a key point to the acquisition). According to SpaceClaim, this is made possible because of a process, called “direct modeling,” that differs dramatically from traditional CAD software, which is used by a relatively small percentage of engineers – typically late in the development process, to document the detailed design. While direct modeling itself is not unique, SpaceClaims implementation of it is. (more…)