For quite some time, I’ve been saying to my peers and detractors that 2018 might finally be the year the “cloud” takes off, whether we’re talking storage in the cloud, CAD in the cloud, simulation in the cloud – whatever in the cloud. I also think that another “cloud” innovation that will get its just attention is the point cloud that will grow far beyond its traditional role for representing surfaces to becoming an integral component of 3D modeling and maybe even virtual reality.
So, exactly what is a point cloud? Technically, a point cloud is a data base containing points in a 3D coordinate system. A point cloud is a very accurate digital record of an object or space. It is saved as a (very) large number of points that cover surfaces of a scanned/sensed object. The points in a point clouds are always located on the external surfaces of visible objects, because they are the points reflected from scanned objects.
In a three-dimensional coordinate system, these points are usually defined by X, Y, and Z coordinates, and intended to represent the external surface of an object.
Point clouds can be created by several methods, including 3D scanners and photographs. These devices measure a large number of points on an object’s surface, and often output a point cloud as a data file. The point cloud represents the set of points that the device has measured.
Reality Capture – Converting Photos Into 3D Models
The key factor in acquiring point cloud data is the access/visibility to scanned surfaces. It is important to remember, that point clouds are created with visible access to real objects. Regardless of the method of acquisition (scanner or photos). It is impossible to obtain points on the surfaces that are not visible from the position from which data is collected. This means that to cover entire objects, many scanning positions must be combined.
In November, Autodesk announced several updates to its Forge platform, including new cloud application development tools, the Forge Application Framework, and several new investments at Forge DevCon, the company’s event for Forge developers held immediately before Autodesk University.
Since its inception in December 2015, Autodesk claims that rapid progress has been made with adopters of the Forge Platform in changing both what and how things are made, and at transforming “the future of making things.”
The cloud-based Forge Platform features APIs and SDKs developers can use to create design, engineering, visualization, collaboration, and other types of enterprise applications. The Forge developer program aims to bring together a community of cloud application developers by providing application development resources.
The Forge Program consists of three main components:
The Forge platform (PaaS) that originally provided access only to APIs, but now can be used to do that as well as build apps from scratch with the Forge Application Framework
The developer program which is the growing Forge community
Autodesk Forge Fund investments that increased significantly in 2017
What is Autodesk Forge?
The Forge DevCon event is part of a comprehensive Forge developer program that provides learning, support, and business development resources for Autodesk’s community of cloud developers. This community includes developers representing industries that include architecture, engineering and construction (AEC) and manufacturing, as well as emerging areas such as augmented reality (AR), additive manufacturing (AM), and the Internet of Things (IoT). The majority of Forge developers are using multiple APIs to create services and solutions that fuel how software products are designed, built and used.
In 2017,bitcoin value surgedfrom just under $1,000 at the beginning of the year to nearly $20,000 by mid-December.
While some industry leaders are skeptical of bitcoin, others are eagerly investing, confident in projections that bitcoin value will reach $1 million by the end of 2020. I don’t know if I’d go that far, but then again, I’m no financial expert.
However, many financial pundits and industry observers see bitcoin’s supporting technology, blockchain, as the true star with the greatest potential in coming years, and manufacturing could prove to be one of its biggest successes.
What Exactly Is A Blockchain?
According to Investopedia, “A blockchain is a digitized, decentralized, public ledger of all cryptocurrency transactions. Constantly growing as ‘completed’ blocks (the most recent transactions) are recorded and added to it in chronological order, it allows market participants to keep track of digital currency transactions without central recordkeeping. Each node (a computer connected to the network) gets a copy of the blockchain, which is downloaded automatically.
Originally developed as the accounting method for the virtual currency Bitcoin blockchains – which use what’s known as distributed ledger technology (DLT) – are beginning to appear in a variety of commercial applications, including manufacturing. Currently, the technology is primarily used to verify transactions, within digital currencies, though it is possible to digitize, code, and insert practically any document into a blockchain, including those found in the manufacturing process. Doing so creates an indelible record that cannot be changed and the record’s authenticity can be verified by an entire community (supply chain) using the blockchain instead of a single centralized authority.
For as long as I can remember, cloud storage and computing have offered two things – endless (unrealistic) promises and perpetual (unrealistic) growth. For some time that was true, but several things have occurred in the past couple of years that temper those claims and portend what may happen in the future for technology providers that become increasingly reliant on the cloud – reliability, accessibility, and security.
Cloud computing, or internet-based computing provide shared processing resources and data to computers and other devices on demand. From the beginning, it was intended as a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal management effort.
Proponents have always claimed that cloud computing allows companies to avoid upfront infrastructure costs, and focus on projects that differentiate their businesses instead of on infrastructure. Proponents have also claimed that cloud computing allows enterprises to get their applications up and running faster, with improved manageability and less maintenance, and enables IT to more rapidly adjust resources to meet fluctuating and unpredictable business demand. Cloud providers typically use a “pay as you go” model. This can lead to unexpectedly high charges if administrators do not adapt to the cloud pricing model. Even so, the potential for premium MCAD with minimal computing hardware cost make the prospect attractive and compelling.
To a large extent most of these claims have proven true, and I have been a proponent for many aspects of cloud computing, but there is also a downside – generally, you just don’t need as many people to run and maintain a cloud-based organization.
With 2017 winding down and the holidays upon us, MCAD news typically slows down big time. Not so this year, though, as two 3D printing manufacturers – Desktop Metal and Carbon – announced big news this week.
Desktop Metal Shipping Studio System
Just eight months after its initial introduction, Desktop Metal announced it has begun shipping its metal 3D printer to early pioneer customers as part of the Studio System rollout.
The Studio System, which debuted in May, is the first office-friendly metal 3D printing system for rapid prototyping and is 10 times less expensive than existing technology today. The Studio System is a complete platform, including a printer, a debinder, and a sintering furnace that, together, deliver metal 3D printed parts in an office or on the shop floor.
Participating in Desktop Metal’s Pioneers Program, Google’s Advanced Technology and Products (ATAP) group is the first pioneer to receive the Studio printer. Among the inaugural Pioneer customers in the program, companies span six industries – heavy machinery, consumer electronics, automotive, service bureaus, machine shops and government & education. Benchmark parts range from tooling, prototyping and jigs & fixtures, to end-use parts for functional applications.
Desktop Metal’s 3D Printer (video courtesy of TechCrunch)
“Since the launch of our Pioneers Program, we have seen really passionate engineers and world-class companies begin to develop benchmark metal 3D printed parts with the Studio System,” said Ric Fulop, CEO and co-founder of Desktop Metal. “We are extremely excited to begin shipping our Studio printer to these early pioneer customers and sales partners, including Google’s ATAP, and, over the next several months, will be working closely with each to learn more about how engineers want to use our system.”
Recently, we had the opportunity to interview Grant Imahara at the Arm TechCon 2017 Conference in Santa Clara, CA.
Grant is the celebrity engineer spokesperson for Mouser Electronics, the leading global New Product Introduction (NPI) distributor. Grant is an electrical engineer, roboticist, and television host. He is best known for his work on the television series MythBusters, where he designed and built numerous robots and specialized in operating the various computers and electronics that were utilized to objectively test myths. More recently, Grant has partnered with Mouser Electronics in launching its Empowering Innovation Together program, where he hosts webisodes and contributes blog posts and articles.
Grant visited our EDACafe exhibition booth at Arm TechCon for an interesting interview that covered many topics, including his relationship with Mouser Electronics.
Interview with Grant Imahara at Arm TechCon 2017
EDACafe: Can you discuss your relationship with Mouser Electronics and what you do with the company?
Grant I: I am Mouser’s celebrity engineer spokesman, which is kind of funny because generally speaking, engineers are not the rock stars and don’t often get the recognition we deserve for all the amazing things that we do. Mouser said, “Let’s take a person who is a known face from TV, who is also an engineer and make them our spokesperson.” So, here I am.
If you think there are a lot of industrial robots out there, you’re right. But, by 2019, more than 1.4 million new industrial robots will be installed in factories around the world – that’s the latest forecast from a report published by the International Federation of Robotics (IFR).
The number of industrial robots deployed worldwide will increase to around 2.6 million units by 2019. That’s about one million units more than in the record-breaking year of 2015.
Broken down according to sectors, around 70 percent of industrial robots are currently at work in the automotive, electrical/electronics and metal and machinery industry segments. In 2015, the strongest growth in the number of operational units recorded was registered in the electronics industry, which boasted a rise of 18 percent. The metal industry posted an increase of 16 percent, with the automotive sector growing by 10 percent.
New Technology Enhances Industrial Robots
The US is currently the fourth largest single market for industrial robots in the world. Within the NAFTA area (US, Canada, and Mexico), the total number of newly installed industrial robots rose by 17 percent to a new record of some 36,000 units (2015). The leader of the pack was the US, accounting for three-quarters of all units sold where 5 percent growth was recorded. With a comparatively much smaller number of units, the demand in Canada increased by 49 percent (5,466 units), while that in Mexico grew by 119 percent (3,474 units). With a stable economic situation, it is expected that North America will see average annual growth of 5 to 10 percent in sales of robots through 2019.
One of the most interesting, but mysterious and most misunderstood technologies in the digital realm are blockchain and bitcoin. Blockchain, specifically, is also the technology with the greatest potential to secure data and transactions that demand trust. Although they are related, separately and together they require quite a bit of space to adequately explain, so this time around, I’ll focus on a few aspects of blockchain and their possible implications for manufacturing.
Blockchain combines the openness of the Internet (unless/until Net Neutrality goes away) with the security of cryptography to give companies a faster way to verify vital information and establish trust without the need for third parties and other intermediaries. It was initially developed more than a decade ago to provide the technical underpinnings for Bitcoin, the cryptocurrency with which it is sometimes mistaken. As Pat Bakey, president of SAP Industries, noted, “Early horror stories about bitcoin, the most famous digital currency to use blockchain, prompted its mainstream dismissal as a dubious tool of the dark web.”
At its core however, blockchain is simply an open and secure method of recording transactions, just like a traditional ledger. Because blockchains establish trust, they provide a simple, paperless way to establish and track ownership of money, information, and objects by individuals, companies, and other organizations.
Blockchain: What’s In It For Manufacturers?
“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value,” wrote Don and Alex Tapscott in their book, Blockchain Revolution.
It’s almost the end of November, so with just over a month left of this year, it’s not too early to start thinking about what we’ll be covering in 2018. The calendar below reflects what we regard as some of the most important topics today in design and manufacturing, as well as feedback from our readers and other supporters requesting content.
The main theme for each month will be covered in an extended article or series of articles so that the topic can be covered more comprehensively.
We’ll also be covering some of the major MCAD events throughout the year, reporting what we see and hear from vendors, partners, and attendees. All of the events we attend will include daily written coverage and Tweets throughout event days, as well as video and audio interviews, and podcasts.
If you have any thoughts of topics you would like to see covered in 2018, feel free to contact me at jeff@ibsystems.com or 719.221.1867.
We look forward to an exciting 2018 and providing you with the MCAD content you want most for improving your design, engineering, and manufacturing processes.
Keep MCADCafe.com your source for all things MCAD because 2018 is going to be a great year!
2018 MCADCafe Editorial Calendar of Monthly Topics
January 2018 – Blockchain in Manufacturing
February 2018 — Cloud Computing with MCAD Applications
Although I’m not much of a fan for Las Vegas per se, I do enjoy attending Autodesk’s annual spectacle that attracts at least 10,000 attendees to Sin City — Autodesk University.
This year’s event was markedly different than ones in the recent past. Different because:
This was the first AU presided over by Autodesk’s new President and CEO, Andrew Anagnost
The attention the Forge development platform received
AEC and construction seemed to take center stage for much of the event and the exhibit floor
Generative design and Fusion 360 were emphasized on the manufacturing side of the business
The Internet of Things (IoT) is getting a lot of attention fro Autodesk and will be coming out of the shadows very soon
The “cloud” was everywhere, including the addition of AnyCAD into Fusion 360
I’ll briefly discuss each of these bulleted items, but will cover each of them in more detail in coming weeks
Words From The New CEO
Having been the President and CEO of Autodesk since June, Andrew Anagnost took the stage the first day of AU in his relatively new role to talk about the theme of this year’s AU, which was designing more things, designing better things, and accomplishing this with less — materials, staff, resources, and time.
Andrew Anagnost, AU 2017 Keynote
Anagnost said the panacea for making this happen is automation that will actually increase jobs and productivity. We shouldn’t be so concerned about if automation take our jobs as we should be of the opportunities of where automation will take us. With so much happening so quickly on the automation and technology fronts, the problem is not so much a scarcity of jobs as it is a scarcity of skills to benefit from the opportunities.
An interesting numerical comparison he made that back in the day there were approximately 300,000 drafters in design, manufacturing, and architecture. Compare that to today’s approximately 10,000,000 design software users and you appreciate how things have changed by the sheer number of people involved on the creative design side.
This week Autodesk also announced that it has formed a new partnership with Village Capital to fund the creation of their workforce development and transition initiative, focused on entrepreneurship, job training, and upskilling in a world of automation. The company is also teaming up with LinkedIn Learning to offer free access to more than 40 courses in multiple languages, relevant to the architecture, infrastructure, construction, and manufacturing industries.
Technology can accelerate solutions to our most pressing problems, such as anticipated global population growth of 30 percent by 2050, but only if people are prepared work with machines in new ways. These are the latest moves in Autodesk’s efforts to prepare the workforce to thrive in a future that will require people to make and build more, do it better, and with less negative impact on the world.