Open side-bar Menu
 MCADCafe Editorial

Posts Tagged ‘Velo3D’

Velo3D Releases Unique Metal Hardware & Software AM Solution With New Approach

Thursday, August 23rd, 2018

The march of new metal AM machines continues as this week, Velo3D announced its comprehensive metal additive manufacturing (AM) solution comprised of the Sapphire system, Flow print preparation software, and Intelligent Fusion technology. According to the company, the solution solves some difficult AM challenges including product design limitations, part-to-part consistency, process control, and cost-effective manufacturing.

“Additive manufacturing has the potential to be revolutionary,” said Ashley Nichols, general manager at 3D Material Technologies (3DMT), a leading metal additive manufacturing services bureau. “Systems are getting bigger, but not delivering on the promises of metal additive manufacturing. Through a collaborative partnership, 3DMT and Velo3D are unlocking new applications, pushing the envelope of what is currently considered possible. We look forward to continued success, and to delivering on the promises of the potential of metal additive manufacturing.”

 

Sapphire System

The Sapphire system is a laser powder bed metal additive 3D printing system designed for high-volume manufacturing. Sapphire is capable of building complex geometries including designs with overhangs that are less than five degrees and large inner diameters without supports. To deliver part-to-part consistency, Sapphire’s integrated in-situ process metrology enables closed loop melt pool control. To maximize productivity, the Sapphire system contains a module that enables automated change-over with offline unpacking.

 

The Velo3D Sapphire automated system in action

Build envelope is 315 mm diameter, z-axis 400 mm. Build materials include IN718 and Ti6AlV with a typical throughput of >60 cm^3/hour of IN718.

 

Flow Print Preparation Software

Flow print preparation software includes support generation, process selection, slicing and simulation of complex part designs to validate execution feasibility before the build. Geometrical feature-driven processing enables low angles below 5 degrees. In addition, deformation correction technology enables the user to produce parts without the need for iterations, achieving a first print success rate of up to 90 percent. Flow minimizes the need for supports, reducing typical support volume by 3-5 times, which removes or at least reduces the labor intensive post processing necessary with conventional approaches.

Supporting a part may seem like a straightforward proposition, but there are significant hidden costs and complexities in this process. The first is in the design of the supports. Deciding where to put supports takes design time and effort during print preparation, because support shape and placement is not a simple process; it requires experience and judgement in order to get the best results.

A frequent outcome is that designers err on the side of over-supporting low-angle surfaces, in order to avoid build failure. This results in many supports that later need to be removed, and depending on the complexity of the supports, this can be a difficult proposition, requiring multiple set-ups on a CNC mill, or wire EDM, or a turning step. It takes time to print so many supports; this adds to the total build time, and build cost is primarily a function of build time.

 

 

The Velo3D Sapphire System is a 3D metal printer for high-volume manufacturing

(more…)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise