Open side-bar Menu
 Jeff's MCAD Blogging
Jeff Rowe
Jeff Rowe
Jeffrey Rowe has almost 40 years of experience in all aspects of industrial design, mechanical engineering, and manufacturing. On the publishing side, he has written well over 1,000 articles for CAD, CAM, CAE, and other technical publications, as well as consulting in many capacities in the design … More »

CAM Software Developments at IMTS 2016 – Part 2

 
September 29th, 2016 by Jeff Rowe

IMTS Logo

During the course of IMTS 2016 we visited and talked with several CAM vendors on what they specifically were showing at the event, as well as their take on the CAM industry in general.

In Part 2 of a series started last week, what follows are the results of some of the conversations we had while looking for the newest and most innovative in CAM software at IMTS 2016.

MachineWorks

MachineWorks functionality offers real-time simulation and verification for virtually any type of CNC machining, including kinematics, multi-axis, mill-turn, robotics, Swiss-type turning, Wire EDM, hybrid machining (subtractive + additive manufacturing) with features such as on-the-fly crash and gouge check, target part comparison, material removal and infinite zooming.

The forthcoming MachineWorks release contains many developments, one of the most significant being the support of cloud-based applications for CNC simulation and verification. This new feature allows networked devices such as mobile phones, tablets, laptops and desktops to visualize MachineWorks simulations running in the cloud.

MachineWorks Verification Software Showing Clash Detection

A new geometry query API makes rendering integration much easier for applications. It has been designed to be future-proof and flexible.

Read the rest of CAM Software Developments at IMTS 2016 – Part 2

CAM Software Developments at IMTS 2016 – Part 1

 
September 22nd, 2016 by Jeff Rowe

IMTS Logo

IMTS is all about the many aspects of manufacturing from a technology standpoint, so it’s only natural that a lot of the major CAM vendors were represented on the exhibition floor.

During the course of IMTS 2016 we visited and talked with several CAM vendors on what they specifically were showing at the event, as well as their take on the CAM industry in general.

Almost without exception, every CAM vendor we spoke with talked of faster rates for increased efficiency/productivity, greater levels of automation with less operator intervention required, better integration with CAD, ability to handle a broader range of machines, tools, and materials, new roughing and finishing strategies, and so on. Some touted cloud-based capabilities and the ability to exploit the benefits of model-based design. Admittedly, though, with fancy new wrappers, some of the CAM tools were basically repackaged with aging technology more than a decade old underlying a new user interface. However, there were some notable exceptions, and these really stood out from the pack as CAM innovations.

What follows are the results of some of the conversations we had while looking for the latest and greatest in CAM software and what was truly new.

Autodesk

At IMTS 2016 Autodesk ushered in its new 2017 CAM products for many advanced manufacturing applications ranging from CNC mill- and lathe-programming to complex mold and die manufacturing that combine the legacy in CAM software from Delcam with Autodesk’s 3D design and manufacturing software.

Read the rest of CAM Software Developments at IMTS 2016 – Part 1

IMTS 2016: Exhausting, But Exhilarating

 
September 15th, 2016 by Jeff Rowe

IMTS LogoHeld every two years at McCormick Place in Chicago, the International Manufacturing Technology Show (IMTS) is the one of the largest (over 110,000 attendees), most comprehensive (~2,400 exhibitors), and longest (six days) manufacturing shows conferences in the world, certainly North America. This year’s event marked IMTS’s 31st edition. First timers and long timers are overwhelmed by the sheer size of this event. At over 1.3 million square feet, you better dress comfortably and prepare for an overload of manufacturing technology sights and sounds.

Because IMTS is so comprehensive and massive, planning is everything, and as you walk around the various pavilions, you start to get a sense of trends and likely future impact of just about all of the technological aspects of design, engineering, and manufacturing.

IMTS Balloon

Below are the major manufacturing trends that I experienced this week. Starting next week I’ll detail what I considered to be the most significant technologies and products showcased at IMTS this time around. Next week, I’ll also go over the major software developments that were introduced — mostly CAM, but some significant stuff.

Read the rest of IMTS 2016: Exhausting, But Exhilarating

QIF: A Realistic Framework For The Future Of Manufacturing

 
September 8th, 2016 by Jeff Rowe

Interoperability, collaboration, inspection, quality, standards, proprietary data, neutrality, competition, and innovation – these are words and realities that all manufacturers deal with daily. Over the years there have been myriad attempts to bring this stuff together, all while protecting IP. However, as we know, while the attempts to make this happen have often been valiant, too often they have fallen well short, or worse, failed altogether.

That failure may be on its way to being a thing of the past with the advent of the Quality Information Framework (QIF), an ANSI standard that supports digital thread concepts in engineering applications ranging from product design through manufacturing. Based on the XML standard, it contains a Library of XML Schema ensuring both data integrity and data interoperability in Model Based Enterprise (MBE) implementations.
Read the rest of QIF: A Realistic Framework For The Future Of Manufacturing

Changing Of the Guard At ANSYS

 
September 1st, 2016 by Jeff Rowe

For only the fourth time since its inception, earlier this week ANSYS announced a leadership succession plan with a new CEO. James E. Cashman, who has served as ANSYS’ CEO since 2000, will step down as CEO and become Chairman of the Board of Directors effective January 1, 2017. Dr. Ajei S. Gopal, a technology industry veteran who has served as a member of the ANSYS Board since 2011, has been appointed President and CEO effective immediately and will continue to serve on the Board. Dr. Gopal will become CEO on January 1, 2017. Ronald W. Hovsepian, who currently serves as Chairman of the ANSYS Board, will assume the role of Lead Independent Director as part of this transition.


ANSYS_logo

Read the rest of Changing Of the Guard At ANSYS

Will Vuforia Bring Augmented Reality Euphoria To PTC?

 
August 25th, 2016 by Jeff Rowe

As part of its ongoing acquisition quest, less than a year ago PTC acquired Vuforia from Qualcomm Connected Experiences for $65 million. What a difference a year has made!

Vuforia is an augmented reality (AR) technology platform, that PTC is betting will enrich its technology portfolio and further foster its strategy to provide technologies that blend the digital and physical worlds. In other words, the next phase of the Internet of Things (IoT).

When it was first reported that Qualcomm was soliciting bids for Vuforia as part of its effort to cut costs and focus on its key mobile business, PTC surprisingly was the ultimate suitor for the company and its technology.

Vuforia is a software platform that democratizes AR development. According to PTC, Vuforia is the most widely used AR platform in the world, powering more than 80% of AR apps in the Apple App Store and Google Play. In fact, more than 30,000 Vuforia-powered applications have been published on the App Store and Google Play – and have led to more than 275 million app installs. Vuforia also supports an active developer ecosystem with more than 250,000 registered developers, and more than 30,000 projects in development.

Vuforia Logo

Read the rest of Will Vuforia Bring Augmented Reality Euphoria To PTC?

Part 2: Is It Really Smart To Buy Totally Into IoT?

 
August 18th, 2016 by Jeff Rowe

For the past several years we all have heard the non-stop hype from a number of different sources that the Internet of Things (IoT) is the thing that will change everything and improve our lives in ways that are still unimaginable to us. That may be true, but relatively little attention is paid to the converse – what are some of the not so great things that could result from IoT? This darker side of IoT, of course, includes security, but how about data handling, infrastructure, privacy, and the inevitable question of who actually owns the data generated from and for IoT. All of these issues are problems now and will only continue to grow unless and until they are adequately addressed.

IoT Part 2

This week I’ll cover IoT data handling and data infrastructure, both critical if the IoT is to proliferate as many vendors hope and hype.
Read the rest of Part 2: Is It Really Smart To Buy Totally Into IoT?

Part 1: Is It Really Smart To Buy Totally Into IoT?

 
August 11th, 2016 by Jeff Rowe

For the past few years we all have heard a non-stop proclamation from a number of different sources that the Internet of Things (IoT) is the thing that will change everything and improve our lives in ways that are still unimaginable to us. That may be true, but relatively little attention is paid to the other side of the coin – what are some of the not so great things that could result from IoT? This darker side of IoT, of course, includes security, but how about data handling, infrastructure, privacy, and the inevitability of IoT companies going out of business. All of these issues are problems now and will only continue to escalate unless and until adequately addressed.

Believe me, I’m not alone with these concerns.

IoT Security

This time around I’ll cover IoT privacy and company survival. Next week I’ll cover IoT data handling and infrastructure.
Read the rest of Part 1: Is It Really Smart To Buy Totally Into IoT?

Is FeatureScript One of Onshape’s Best Features?

 
August 4th, 2016 by Jeff Rowe

Almost all of today’s CAD products are pretty capable right out of the box, but I’ve often wanted them to do more to suit my particular needs and workflow. Over the years I’ve created macros and used Visual Basic and AutoLISP for defining, customizing, and automating functions and processes not found in CAD products out of the box. My results varied widely – some were good, some were OK, and some were downright unpredictable and bad.

Several years passed and I didn’t really do too much with CAD programming, so my interest waned. That all changed, though, when cloud-based Onshape’s FeatureScript came along earlier this summer.

FeatureScript is a programming language designed by Onshape for building and working with 3D parametric models. The language is built into Onshape and provides the foundation of Part Studio modeling, including geometric references, parametric tools, and a type system with types built for math in three dimensions.

The standard feature types in Onshape, such as Extrude, Fillet, and Helix are already written as FeatureScript functions. Using FeatureScript, custom feature types extend this same function mechanism to Onshape.

Is FeatureScript the first specific programming language to be released for a CAD product? No, not exactly, but it is unique in many ways and adds to Onshape’s positive differentiation in the crowded CAD marketplace.

Introducing Onshape’s FeatureScript

Read the rest of Is FeatureScript One of Onshape’s Best Features?

Battle In the Wireless 3D Printing Software Arena: OctoPrint Vs. AstroPrint

 
July 28th, 2016 by Jeff Rowe

All 3D printers need host software to function. That’s a given. Host software sends the commands to a 3D printer that tells the printer how to build an object. Most host software communicates with the printer via a wired USB connection. For almost all 3D printers, a computer running the host software must stay tethered to the 3D printer at all times while it is running. Obviously, this is not always a great situation, hence the advantage of being wireless.

There are basically two ways to perform wireless 3D printing. First, a G-code file can be saved onto an SD card using a computer, then the SD card can be transferred to the 3D printer where the print job is initiated via a controller into a 3D printer.

This arrangement allows wireless 3D printing, but it lacks most the advantages of a truly wireless setup. The 3D printer can still be placed away from a work area, but beyond that, using the SD card transfer method is really no different than transferring data over a cable. The second way to do (truly) wireless 3D printing is by running the host software on a small embedded device, like the Raspberry Pi, that is connected to the 3D printer.

Which Is Better, OctoPrint or AstroPrint?

This is analogous to using a dedicated computer for 3D printing that stays connected to the printer at all times. But, instead of using a computer for this purpose, the host software can be run on something, such as a Raspberry Pi, which is just powerful enough to run the software.

The two most popular host software packages developed for wireless 3D printing are OctoPrint and AstroPrint. AstroPrint is, in fact, based on OctoPrint, and claims to have an optimized codebase for running on embedded computers. The AstroPrint team has made changes and additions to the software, making the two host software offerings quite a bit different in many ways.

While OctoPrint and AstroPrint do share some similarities, they are also different, primarily with regard to their intended users.

Read the rest of Battle In the Wireless 3D Printing Software Arena: OctoPrint Vs. AstroPrint

TurboCAD pro : Limited Time offer



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise