Open side-bar Menu
 PROSTEP INC Blog

Archive for the ‘OpenPDM’ Category

ProProS research project enters crucial phase

Thursday, September 17th, 2020

Following successful completion of an assessment of the current status, the joint research project ProProS being carried out by the Bremen-based Lürssen shipyard group, the Machine Tool Laboratory (WZL) at RWTH University in Aachen and PROSTEP AG is entering the crucial phase. The task now is to develop new methods for end-to-end digitalization of the shipyard’s manufacturing and assembly processes.

Production planning in shipbuilding is characterized by a poor overview of the planning status at the different planning levels and a low-level feedback that is provided late by production. As a result, delays often occur because problems are identified too late and planners have a difficult time finding alternative production paths. The shipyard expects increased digitalization of the processes and the implementation of new tools for anticipatory production planning and control to shorten lead times for the individual departments and result in more efficient use of the infrastructure and available resources.

The aim of the ProProS project is to create a digital twin for the shipyard’s manufacturing and assembly processes that can be used for status monitoring and for optimizing shipbuilding. Together with the WZL’s manufacturing experts, who are responsible for developing the production technology logic, we will be mapping the planning data from the target process (product structure, work orders, assembly sequence, scheduling, etc.) in an end-to-end data model, so that it can be compared in real time with the actual data from production and assembly.

The joint project has an overall budget of 3.2 million euros and is sponsored by the BMWi. It is coordinated by the Lürssen shipyard group and is divided into different phases. The first two milestones involve mapping the material flow in order to recognize where the parts to be manufactured are located and to integrate the target data from planning. This data is then to be compared with the actual data in future milestones in order to detect deviations and adapt the planning data if necessary. The project will run until 2022. The project partners are planning to present the first interim results at COMPIT 2021.©

By Carsten Zerbst

PROSTEP TECHDAY 2020 – online!

Thursday, September 17th, 2020

Due to the corona pandemic, we will be holding the traditional PROSTEP TECHDAY as online event this year so that customers and interested parties can find out about new products and news from our company without risk to their health. The live sessions will take place on November 17, 2020 and will be recorded. Please, save the date.

PROSTEP TECHDAY is the free forum for the PROSTEP community that takes place every two years. At the event, we regularly inform customers and other interested parties about important innovations in our range of solutions and present them with roadmaps for the further development of our software solutions OpenPDM, OpenDXM GlobalX and PDF Generator 3D. In addition, renowned users will give short presentations to the participants, explaining the benefits of our solutions in productive use.

On November 17, 2020, there will be three independent sessions, each lasting 90 minutes, so that participants will be free to choose whether to participate in one or more blocks. We will also be recording the entire event so that interested parties can watch it at a later date. The opportunity to discuss with the speakers will of course only be available when participating in a live session.

The PROSTEP TECHDAY will focus on our extended range of cloud-enabled solutions. We will explain how you can use our data exchange platform OpenDXM GlobalX with extended functions and integration solutions “On Premise” or alternatively as a SaaS (Software as a Service) model without any installation or operating costs.

We will present the newly developed MicroServices architecture of our OpenPDM platform, which supports PLM integration, migration and collaboration in a hybrid on-premise cloud environment. And we will present our solution for the automated generation of spare parts catalogs and the provision of service content on the Web. We will also give you a first insight into OpenCLM, our newly developed solution for cross-domain configuration lifecycle management and ensuring traceability in complex development projects.

By Peter Pfalzgraf

New integration solutions for Dassault Systèmes customers

Tuesday, September 15th, 2020

PROSTEP offers a variety of proven integration solutions for the 3DEXPERIENCE platform. To provide Dassault Systèmes customers with even better support in integrating their heterogeneous PLM system landscapes, we are expanding our portfolio to include official integrations for 3DEXPERIENCE with Aras Innovator and Oracle Primavera P6 and we are developing new integration packages for EXALEAD.

Our OpenPDM integration platform offers the possibility of connecting any PLM and ERP systems, but also other enterprise applications via standardized connectors, to exchange and synchronize product data and structures between different system worlds. The integration modules for the 3DEXPERIENCE platform, which have been in existence for many years, can be used to exchange data with the ENOVIA, CATIA and DELMIA components. Based on this general connectivity, specific PROSTEP integration solutions from 3DEXPERIENCE with Windchill, Teamcenter and SAP have been officially released by Dassault Systèmes.

To meet the growing demand of Dassault customers for powerful integration solutions, we have now agreed with the software manufacturer to expand our range of official product solutions. 3DEXPERIENCE users can now also connect the Aras Innovator PLM solution to their PLM platform. We are also working closely with Dassault Systèmes to develop an integration solution for the Oracle Primavera P6 project and portfolio management solution, which is used by many customers, particularly in the American market.

Furthermore, PROSTEP has been cooperating with Dassault Systèmes in the EXALEAD area since the beginning of 2020 in order to be able to bring lightweight integration solutions to the market. This involves making data from third-party systems accessible to EXALEAD solutions. Together with Dassault Systèmes, special solution packages were defined for these use cases and implemented at PROSTEP, which are now available to customers.

By Peter Pfalzgraf

Record year for the PROSTEP Group in North America

Sunday, July 5th, 2020

Major projects in the automotive, aerospace and defense industries for PLM & ERP integrations, PLM migrations, secure B2B data exchange and lightweight Technical Data Package publication (TDP) help PROSTEP’s North American subsidiary achieve a record year. Despite COVID-19, PROSTEP Inc. increased its revenues by around 40 percent in the last fiscal year, which ended on June 30, 2020.

Two major automotive suppliers have been helped by PROSTEP Inc. to close gaps in the control of the release of their intellectual property and to increase the security, traceability and user-friendliness of their processes with the OpenDXM GlobalX data exchange solution. Each company has purchased several thousand end-user licenses at a fraction of the cost of operating its own proprietary internal portals or other third-party MFT tools. One of the two companies focused on purchasing and ERP integration for the secure exchange of quotation data when using OpenDXM GlobalX. The other has deeply integrated the solution into the PLM environment to seamlessly send large CAD files to development and design partners.

Furthermore, PROSTEP Inc. has enabled one aerospace customer to publish highly configured TDPs for the rapid distribution of lightweight CAD data, parts lists and technical specifications. All data is combined into a single PDF package using PROSTEP’s PDF Generator 3D. Another project in the aerospace industry was aimed at improving interoperability between PLM, MES and ERP through a robust and distributed microservices-enabled Enterprise Server Bus in secure networks. The basis for this is the OpenPDM integration platform from PROSTEP.

In the space sector, PROSTEP Inc. integrated CAD and other product data from PLM and simulation data management systems for a customer. For another, the company started with a proof of concept for the MBSE federation between requirements, SysML and PLM systems. OpenPDM provides the backbone interoperability that coordinates workflow transactions between the systems of different software OEMs. The seamless synchronization of data between two different PLM systems to create the Digital Thread is the subject of a pilot project in the defence sector that will last several years.

“I am proud of the entire PROSTEP team and especially of our team in North America,” commented Karsten Theis, CEO of PROSTEP AG, on the successful fiscal year of PROSTEP Inc.

“In 15 years of our presence in North America, we have built an incredible portfolio of products and technical capabilities to meet the increasingly complex needs of our customers. This has enabled us to fire from all pipes in 2019”.

Commenting on the impact of COVID-19, Theis said: “Fortunately, at the beginning of the pandemic, we had already completed most of our U.S. business for fiscal year 2019 and were in the final stages of delivery. The real test will be the course of the year 2020/2021. Several projects have been delayed, but we hope that they will soon pick up speed again. Like all companies, we are adapting to the new normality of working from home”.

Shortly before the pandemic, PROSTEP Inc. rented larger offices, almost doubling the company’s working space. To date, however, US employees have not been able to work in the new offices for a single day because the move-in date coincided with the first lockdown in Michigan at the end of March. Now they hope to inaugurate the new offices in early 2021.

PROSTEP Inc. was founded in 2006 in Birmingham, Michigan, right in the heart of the US automotive industry. Over the past 14 years, it has made a significant contribution to strengthening our footprint in the North and South American markets. It has become a recognized partner in the areas of data exchange, PLM integration and 3D PDF-based communication for companies in the automotive, aerospace and defense industries across the pond. Not least thanks to our US subsidiary, we are now able to successfully handle larger global projects.

As a wholly owned subsidiary of the PROSTEP Group headquartered in Darmstadt, Germany, PROSTEP Inc. does not publish independent financial information. Customer names are also kept confidential upon customer request.

For further information, please contact: paul.downing@prostep.com

By Paul Downing

No Digital Twin without Digital Thread

Tuesday, April 7th, 2020

Digital Twins offer the possibility to simulate the behavior of physical assets, to monitor them during operation and to continuously improve them. The data and models from planning and development form the context in which the operating data can be interpreted correctly. Putting them together from the wealth of available information is an essential prerequisite for the use of digital twin applications.

The Digital Twin is the digital image of a physical object or system, which can be a product, a production plant, but also a company or a process. The Digital Twin connects virtual planning and development models with the real product or production world in order to give people a better insight into the system and its condition or behavior. A vision in the sense of Industrie4.0 is to enable technically complex systems to control themselves autonomously and behave more intelligently through digital algorithms, virtual models and status information.

The functional relationships of a product or a production plant are defined based on customer requirements and in consideration of a multitude of legal requirements in product planning and development. Without knowledge of these interrelationships, the operating data that the real asset captures and provides in its later product life cannot be interpreted correctly. If you do not know how a machine or system is actually supposed to function, it is not possible to identify the causes of deviations from this target state or behavior beyond doubt and take appropriate countermeasures. At the same time, knowledge of the history of origins is also important in order to be able to assess for what reason, for example, a bearing has failed and which other machines could also be affected by the problem.

This connection between the real asset and the development and planning models describing its history is called a digital thread. It is the digital “red thread” that links the information of a real product instance across processes and IT systems. On the one hand, this makes it possible to bring together all the information from the life cycle of the product instance or the real asset and thus forms the basis for the creation of a digital thread. Without a digital thread, the digital twin can be reproduced manually, but it is difficult or impossible to keep it up to date. On the other hand, traceability along the Digital Thread allows decisions in development and production to be questioned and optimization potential to be identified with the help of the operating data.

Management of product configurations

From a PLM point of view, the starting point of the digital twin is a specific configuration of the product or production system, for example the asset in its delivered state. This includes not only mechanical, electrical/electronic and software components with their models, but perhaps also service-relevant information, such as the service life of certain components. Bringing this information together and maintaining it manually is time-consuming and error-prone, especially since the configuration changes over the course of the product’s life, whether through software updates or other measures in the context of maintenance or further development of the asset. The expectation of today’s PLM systems is to automatically extract the configuration for the Digital Twin and keep it up-to-date.

We speak here of the concept of Configuration Lifecycle Management (CLM), which makes it possible to generate temporally valid views of the product across IT system boundaries and to manage product configurations across all phases of the product lifecycle. The main function of CLM is to create and keep consistent the various views of the digital product model during the life cycle, and to document their validity over time. To do this, it uses cross-system and cross-discipline baselines. These baselines document the state of the configuration at a certain point in time or maturity level and thus also control the representation of the Digital Twin. They enable companies to immediately and reliably answer the question at any point in the process whether and how the product or asset meets the requirements placed on it or in what state the asset was at a defined point in time, for example, which product configuration was delivered to the customer.

In order to manage the configuration of a product along its entire life cycle in a traceable manner, the use of a powerful PLM integration platform with connectors to all IT systems involved is required. As an intermediate layer spanning all IT systems, it creates the prerequisite for bringing together the information from the individual IT systems in a way that corresponds to the digital thread concept.

Cross-company collaboration

In industries such as mechanical and plant engineering or shipbuilding, companies face the challenge that the manufacturer who builds and provides the Digital Twin is not necessarily the operator and user who feeds it with operational data. Both the digital data and the operating data, or at least part of it, must therefore be exchanged and synchronized across companies in order to keep the Digital Twin up to date and to be able to use the operating data for the continuous improvement of real assets. Questions such as data security, protection of intellectual property and ownership of the data therefore play a very central role in the development and use of a digital twin application.

More and more customers today require their suppliers to deliver digital data and models to support Digital Twin applications along with the physical assets. CLM can be used to control not only the amount of information provided, but also the level of detail of the information and the formats in which it is delivered. They can be compiled largely automatically and made available to the customer as a data package, for example in 3D PDF format.

In order to maintain digital consistency in cooperation across company boundaries, the exchange partners must first agree on the scope of the information to be exchanged and agree on common standards for handling this information. But the central question is where the Digital Twin should live? PROSTEP is convinced that it is advisable to set up a joint collaboration platform for this purpose, which will become part of the information model. This platform will provide customers with the information they need to build their Digital Twin application while the development process is still underway and will also allow them to synchronize changes to the master models during operation if necessary. The common platform can also be used to link parts of the operating data required by the manufacturer for new service offers such as predictive maintenance or product improvements with the Digital Thread.

Three building blocks for the Digital Twin

The foundations for the Digital Twin are already laid in product development and production planning. To bring it to life and keep it alive, the digital umbilical cord must not be cut. This is why an integration platform is needed that makes the digital information from the various authoring and data management systems available at any time. A powerful configuration management system that manages the relationships between the information scopes and their validity is essential for building a Digital Twin. However, digital consistency is not a one-way street. In order to derive maximum benefit from the product twin in terms of closed loop engineering, traceability between Digital Twin and Digital Thread must be ensured. The creation of a collaboration platform maintains digital consistency even beyond company boundaries.

 

 

By Lars Wagner

Clean ERP/PLM migration with the “data washing machine”

Friday, April 3rd, 2020

In one fell swoop, the robotics and automation specialist KUKA has migrated its SAP installation, introduced Teamcenter as its new PLM system and reorganized the entire engineering-to-order process. Crucial to the project’s success were the soft PLM migration, during which the legacy and new system coexisted for a short period, and the consistent cleansing of the data, which KUKA undertook with the assistance of PROSTEP AG. PROSTEP also accompanied KUKA during the changeover to the current Teamcenter version.

KUKA, which is headquartered in Augsburg, is one of the world’s leading suppliers of automation solutions. KUKA offers customers everything from a single source: from robots and cells to fully automated systems and their networking. The company, which was founded over 120 years ago, employs around 14,200 people worldwide and generated revenues of 3.2 billion euros in the 2018 financial year.

The first step in the company’s transformation program – “Power ON KUKA 2020″ – was to standardize the process and system landscape in the engineering-to-order (ETO) sector. ETO is the term KUKA uses to describe everything relating to the development of custom-built production systems for the automation of manufacturing processes– in contrast to its configure-to-order (CTO) business involving robotic components and systems. The PLM migration project was driven first and foremost by the ETO sector, as Project Manager Matthias Binswanger affirms. However, the project also had to be synchronized with the consolidation of the global ERP landscape that was taking place at the same time.

KUKA previously had a very heterogeneous ERP and PLM landscape, which was partly due to the increasing scope of the group structures. For example, the ETO specialists in Augsburg worked with a local SAP instance and an older version of the former Eigner system, Oracle Agile e6. After an in-depth system selection process, KUKA decided to implement the Teamcenter PLM system from Siemens Digital Industries Software as the global solution for all its ETO locations.

Teamcenter is intended to support the future product engineering process, including functional engineering, manufacturing process planning and simulation, as well as control engineering change management. To do this, it has to be familiar with the relationships between the mechanical, electrical and fluid components of the functional units (for example valves, sensors and their processes), which were mapped in a separate application in the old world. Changes are part of the ETO sector’s everyday business because the systems are often designed before the products to be manufactured on them are fully defined. “One major challenge is the complexity that results from the sheer volume of changes to thousands of components,” explains Binswanger.

PLM implementation was already underway when KUKA launched the parallel consolidation of the heterogeneous ERP landscape in order to give greater transparency to its project activities. The simultaneous changeover to SAP S/4HANA considerably increased the complexity of the PLM migration, as Binswanger explains: “To introduce the new solutions, we made use of a clear project control mechanism with a flexible, multi-stage project structure that did not previously exist in this form. This went hand-in-hand with changes to the engineering processes and methods, which in turn had repercussions for the PLM landscape and therefore also had a big impact on PLM migration.”

To migrate the PLM system, the project team called on the services of the experts from PROSTEP, who brought to the project not only their PLM expertise and many years of experience in performing migrations but also PROSTEP’s proven OpenPDM integration platform. “There aren’t many companies that have certified connectors to Agile e6 and Teamcenter. As a result, there was really no real alternative to PROSTEP,” explains Binswanger. The PLM consulting and software company also assisted the customer during the cleansing of the master data prior to the start of the migration. When considering this step, it is important to understand that at KUKA materials, BOMs, etc. are currently created in the PLM system, or in both systems, and then published to the ERP system.

While the changeover to SAP S/4HANA was to follow the “big bang” approach, KUKA chose the soft route for its PLM migration, with the legacy and new systems temporarily coexisting. Although Teamcenter is the target system for the new architecture, the idea was to conclude any open projects in the old PLM environment. Binswanger explains that migrating them all in one fell swoop would have required enormous effort. Agile only works with documents, materials, BOMs and structures, whereas the CAD data is managed using a file-based approach or in containers. Teamcenter, on the other hand, provides interfaces to all the CAD systems, system versions and releases used at KUKA, which means that CAD files in different formats can be stored together with the materials for the first time.

Direct synchronization of the PLM data

The changeover to SAP S/4HANA and the temporary coexistence of the two PLM systems meant that the migration resembled a billiards shot across three cushions. First of all, Agile e6 had to be updated and interfaced with the new ERP system so that materials and BOMs could be correctly linked to the new project structure. It was then necessary to connect the two PLM systems in order to achieve the cross-system synchronization of standard parts, catalog parts and other materials. Binswanger explains why it was not sufficient to simply synchronize them via SAP: “PLM data with no logistical relevance is not published to the ERP system in the first place. However, this data is important for the Teamcenter users so that they can re-use the materials stored in Agile.”

The OpenPDM integration platform provides the basis for PLM data synchronization. It is designed to transfer all the materials between the two system environments and not only the standard and catalog parts. PROSTEP adapted the Teamcenter connector a number of times in order to take account of changes in the data model. All types of document are now also transferred together with the PLM metadata. Automatic quality checks ensure that the documents meet the requirements of the Teamcenter data model. “We have an activity-driven application which automatically synchronizes the data sent to Teamcenter every five minutes, that is to say it creates new materials together with their attributes, structures and documents or updates modified ones,” says Binswanger.

Contrary to the original planning, KUKA decided to actively shut down the legacy system rather than simply phasing it out gradually. This allows the company to save on the high license and maintenance costs involved in operating two systems. In order to meet requirements regarding traceability, the documents relating to long since completed projects also have to be migrated to Teamcenter. Binswanger explains that in order to do this, it will be necessary to relax the quality requirements a little and store the documents uncleansed in a separate archive, where they can be accessed only for reading and printing.

Data selection and cleansing

Due to the simultaneous changeover to SAP S/4HANA, the PLM migration in Augsburg started later than planned but with considerably higher-quality input data. The project team took advantage of the delay to implement a clearly structured, documented OpenPDM-based process for cleansing the data. One clear specification was that, of the 3.3 million data records in the old SAP solution, only those materials that are relevant for future projects should be transferred to the new environment. Therefore, it was first necessary to identify the data that needed to be migrated.

On the basis of over a dozen criteria and taking account of various attributes, PROSTEP calculated the so-called Total Article List (TAL) from the 3.3 million data records in SAP and Agile. The TAL is a list of all the articles that have been ordered or installed in systems, used for service purposes in recent years or are still in stock. It now comprises “only” 1.2 million articles. According to Binswanger, PROSTEP’s ability to resolve the structures and identify the components for any given article is of decisive importance.

The TAL controlled not only the big-bang migration of the SAP data but also acted as master for the selective cleansing and migration of the PLM data. In particular, the repeat parts (standard parts, purchased parts, semi-finished products, etc.) had to be augmented with additional data and classified before being imported into Teamcenter. To do this, KUKA used the software classmate from simus systems together with other solutions. OpenPDM controlled the entire cleansing process, from the extraction of the data to manual or automatic cleansing through to validation of the results, and also generated the corresponding quality reports. A total of approximately 80,000 articles passed through one or other of the programs in the “data washing machine”. Only the data that ultimately met all the quality criteria was automatically imported into Teamcenter.

In Augsburg, SAP S/4HANA, a new Agile version and Teamcenter all went live on the same day. An important milestone for KUKA. According to Binswanger, PROSTEP, its OpenPDM software platform and its expertise played a key role. KUKA successfully took advantage of the migration project to cleanse its database of unnecessary clutter.

The Teamcenter application was continuously further developed after the go-live. This repeatedly required adaptations to OpenPDM, which PROSTEP implemented in agile sprints. One major challenge was to migrate the documents from ongoing Agile projects because the data models in the two systems are very different. The last hurdle for the time being was the changeover to the new Teamcenter version 12, which required a change of integration platform version. Thanks to PROSTEP’s support, the company was also able to surmount this hurdle without any problems.

By Andreas Hoffmann

PROSTEP completes the new OpenPDM architecture

Monday, March 2nd, 2020

PROSTEP has released Version 9.1 of its PLM integration platform OpenPDM, which is designed to help customers find their way into the cloud. Its new MicroServices architecture with independent connectors to common PLM systems makes it particularly suitable for hybrid PLM scenarios in on-premise and cloud infrastructures.

To enable the use of OpenPDM in distributed software architectures, PROSTEP has broken down the integration platform into smaller software components and designed the mapping and process engine as independent MicroServices. In addition, the import and export functions are now part of the connectors, which the system administrator can configure individually via a web-based interface. Thanks to the consistent use of REST interfaces, each OpenPDM connector can thus run independently and can be used, for example, with message brokers such as Apache Kafka in conjunction with ESB (Enterprise Service Bus) architectures. In addition, PROSTEP has integrated Docker technology so that OpenPDM can be run in a cloud-based container environment such as OpenShift.

The neutral OpenPDM data model also had to be extended for the new software architecture. Process modeling is now carried out with the proven workflow engine Camunda, which is also used by customers such as NASA and T-Mobile. The Camunda Modeler has a graphical user interface that enables intuitive modeling of BPMN (Business Process Model and Notation) workflows and DMN (Decision Model and Notation) decisions.

The new architecture allows customers to flexibly use the proven OpenPDM functions for PLM integration, migration and collaboration in hybrid PLM scenarios. Version 9.1 currently offers MicroService-based connectors to the PLM systems 3DEXPERIENCE R2019x and R2020x from Dassault Systèmes, PTC Windchill R11.1 and R11.2, SAP PLM R3, R3 EHP and S4 (on premise) and the IoT platform PTC ThingWorx 10.x. PROSTEP will migrate additional connectors to the new architecture as required.

The new OpenPDM version is not backward compatible with versions 8.x. PROSTEP is thus primarily addressing new customers who want to use PLM and/or ERP systems from the cloud and integrate them with their existing IT infrastructure. Existing customers with complex integration, migration or collaboration scenarios based on OpenPDM 8.x do not necessarily have to migrate their installations. PROSTEP will also continue to develop its existing software and will soon launch a new version 8.7 with connectors to the current versions of all connected PDM/PLM and ERP systems.

By Udo Hering

PROSTEP builds digital twin in the ProProS research project

Sunday, February 9th, 2020

The Bremen-headquartered Lürssen shipyard group, the Machine Tool Laboratory (WZL) at RWTH University in Aachen and PROSTEP have launched the ProProS research project. The aim of the project is to create a digital twin for the manufacturing and assembly processes at shipyards and use it for status monitoring and optimizing shipbuilding. The shipbuilders want to minimize delays in the processes.

Lürssen, a family-owned company, expects digitalization to improve transparency in production and reduce throughput times says Dr. Bernhard Urban, Head of Development & Innovation: “The joint research project with PROSTEP and WZL provides the basis for increased digitalization in our manufacturing and assembly processes. We hope that the development program will help us drive the broad-based digitalization processes at our company forward in a targeted manner and thus do justice to the leadership claim regarding performance and quality formulated by the founder of our company, Friedrich Lürssen.”

As part of the project, PROSTEP is working together with the WZL’s manufacturing experts, who will be responsible for developing the production technology logic, to develop the demonstrator for a digital twin. It maps the planning data from the target process (product structure, work orders, assembly sequences, scheduling, etc.) in an end-to-end data model and compares it in real time with the actual data from production and assembly.

The first step involves detecting disruptions in the process flow, e.g. caused by a missing or unfinished component, at an early stage based on a unique component ID and assessing their impact on the schedule. But it is also intended that the digital twin perform control tasks and help avoid or minimize delays by simulating alternative production and assembly sequences.

The project, which has an overall budget of 3.2 million euros, will runs until 2022 and is supported by the German Federal Ministry for Economic Affairs and Energy (BMWi). The Lürssen shipyard group, which specializes in building yachts and naval vessels, is the project coordinator.

By Carsten Zerbst

PROSTEP joins the ASAM Association

Tuesday, February 4th, 2020

PROSTEP has joined the Association for Standardization of Automation and Measuring Systems (ASAM), which concerns itself with the new standards for the digital validation of autonomous driving functions. We want to become involved in the work performed by committees in new business areas like autonomous driving and help develop the necessary standards.

ASAM is a non-profit organization comprising leading OEMs, system suppliers and engineering service providers in the automotive industry as well as renowned research institutes. Their shared aim is to develop technical standards that will enable all the tools used for software development and the testing of control devices in vehicles to be linked together in a way that makes the end-to-end exchange of data possible. PROSTEP’s experts will primarily be involved in the simulation project groups (OpenSCENARIO, OSI, etc.), the associated transfer projects and in the activities currently being established.

All standardization-related activities for the digital validation of autonomous driving functions converge at national level in ASAM. The standards provide the basis for uniform methods and tool chains for the validation and verification of highly automated (Level 4) and autonomous (Level 5) vehicles in urban environments, which are being developed in the sponsored projects V&V and SET Level 4to5. PROSTEP is playing a key role in both projects as a mediator between industry and the research community.

PROSTEP sees autonomous driving as a key future technology and a promising market for the company’s wide range of consulting and solution offerings. As a member of ASAM, we will be able to help develop appropriate standards together with experts from the major carmakers and system suppliers. We also want to further expand our expertise in the fields of electronics and software development and systems engineering within the framework of committee work.

By Steven Vettermann

OpenPDM makes 3D data available worldwide at Brose

Monday, January 27th, 2020

Engineers at numerous companies still prepare their 3D data manually in order to make it digitally available to colleagues in purchasing or production planning. Not so at the Brose Group. The manufacturer of mechatronic components and systems for the automotive industry has completely automated the preparation, conversion and provision of CATIA data in JT format using PROSTEP solutions.

With 26,000 employees and annual revenues of 6.2 billion euros, the Bamberg-headquartered Brose Group ranks among the world’s top 40 automotive suppliers. Every second new vehicle that rolls off the production line worldwide is equipped with at least one Brose product to increase safety, comfort and efficiency. The core competence of the company, whose success story began with a crank drive for retracting car windows, is the synthesis of mechanical, electrical, electronic and sensor systems. The product range includes door systems, liftgates, adjustment systems for front and rear seats as well as electric motors and drives for a number of different of uses in vehicles.

The (autonomous) driving experience of the future begins as soon as you get in a vehicle – with doors that open automatically, provided that there is nothing in way, seats that adjust automatically to whoever is driving and a preheated vehicle interior. Door, closure and seating systems are thus becoming complex, mechatronic or even cyberphysical systems whose development not only requires new tools, methods and processes but also a more efficient use of existing information. “Far too much information is still contained in TIFF and PDF/A documents and is therefore not available in digital form to downstream processes,” says Walter Redinger, head of Development and Production Systems/Information Systems at Brose.

The IT department has therefore defined a clear digitalization strategy together with the company’s business operations. In addition to the automation of design processes using assistance systems and the virtual validation of prototypes, it also involves an approach to OEM collaboration that is oriented to a greater extent towards, for example, systems/model-based systems engineering (MBSE) and the use of new technologies such as augmented reality (AR). The objective is to have a digital master that not only includes the 3D models but also the electrics/electronics (E/E) information and software versions and makes all this information digitally available.

Multi-layer PLM landscape

Redinger goes on to say that the key to digitalization is an end-to-end PLM tool chain that covers everything from requirements management to designing the software, printed circuit boards and mechanical components through to test procedures and simulation, including digital production planning and control. “The aim behind this end-to-end digitalization is to integrate the individual disciplines more tightly and enhance the core efficiencies in the processes. This not only requires cultural change in the organization but also places new demands on our PLM landscape.”

The PLM landscape at Brose comprises multiple layers. The PLM backbone is a SAP system that is used to create parts, materials and BOMs, approve drawings and manage changes. It is closely integrated with MS SharePoint, which 5,000 Brose employees worldwide use to handle their customer projects. ENOVIA VPM, the team data management (TDM) system used for mechanical and E/E development to date, is currently being replaced by the 3DEXPERIENCE (3DX) platform. The software developers are currently still using Virtual DOORS software and the Rational Suite set of tools for application lifecycle management (ALM) but will gradually be switching to codeBeamer ALM software solution.

As Redinger says, OpenPDM assumes the role of a hub for connecting the different environments within the PLM landscape. This applies in particular to the successfully implemented project for ENOVIA/3DX-SAP integration, which allows CATIA data to be converted into JT format and made available worldwide. Brose has used the integration platform and PROSTEP’s services in the past, for example to provide joint venture partners with selected data and synchronize it at regular intervals. The solution was also used when the company took over Continental’s electric motor division and the division’s PLM data had to be extracted from Continental’s environment. “PROSTEP is a long-standing and reliable partner with well-functioning tools and very experienced staff,” says Redinger.

3D data for downstream processes

Unlike other automotive suppliers, Brose uses its own CATIA environment for mechanical development rather than the system used by the respective customer. All the engineers at the 25 development sites – i.e. approximately 1,000 employees – use a uniform methodology and apply the same standards, thus making it easier to collaborate on cross-site development projects. “Working in the customer’s environment would be easier for the departments, but would make it more difficult to exploit the synergies offered by standardization and data reuse,” says Redinger. The IT department nevertheless maintains about 30 different customer environments in order to prepare the CAD data and convert it into the respective customer formats. PROSTEP’s OpenDXM GlobalX data exchange platform has been managing data conversion and exchange for a number of years.

Up until now, only 2D drawings derived from CATIA were transferred to the SAP document management system as TIFF or PDF/A and approved there so that they could be made available for downstream processes such as procurement or production planning. Only then did the engineers approve the associated 3D models in ENOVIA. When buyers or suppliers needed 3D models in addition to the 2D drawings to process requests for quotation, engineers had to prepare them, filter out certain details if necessary and convert them to the supplier’s preferred format. The manual processing was not only time-consuming but also had the disadvantage that the purchasing department could never be sure that all suppliers had received the same level of information.

In order to simplify the enterprise-wide use of 3D data, Brose implemented a solution with PROSTEP’s support that automatically triggers JT conversion when 3D data is approved in ENOVIA, or in the future in 3DX, and transfer the JT models to SAP. The solution is essentially based on OpenPDM with connectors to ENOVIA/3DX and SAP as well as PROSTEP’s newly developed batch processing framework (BPF), which manages the third-party converter for converting CATIA data into JT and other formats already available at Brose. When it comes to automatically importing data into the PLM backbone, the data exchange platform accesses SAP web services that ensure that the JT models are correctly linked with the BOMs and can be automatically updated and versioned if changes are made. If a part or assembly is modified, a JT file with a new index is created once the part or assembly has been approved so that its development history is retained in SAP.

PROSTEP has adapted the solution so that the individual process steps, from exporting the data to converting it and importing it into SAP, can be performed in parallel and independently of each other. The reason for this is that Brose also wants to gradually make 3D data from projects launched before the solution went live available in SAP. This will significantly increase the volume of data to be converted. As Redinger says, between 100 and 150 JT files are currently being uploaded to SAP every day.

Savings in downstream processes

Redinger admits that the fact that Brose needs individual parts as well as subassemblies and assemblies converted leads to certain redundancies. “But it has the advantage that the JT models can be exchanged more easily and used for downstream processes. The buyer can send them directly to the supplier, at least when requesting quotations. JT is ideal, especially in the early offer phase, because it is a uniform format with a reduced data volume that does not disclose too much know-how. It is also enjoying growing acceptance in the automotive industry.”

The information contained in the 3D models made available in JT format can be used in a number of different downstream processes since relatively few details are filtered out during conversion. Although product manufacturing information (PMI) is not yet embedded, the JT models are extremely helpful to production planners when they want to obtain a quick overview of the shape of certain components without having to always bother the engineers. If, however, the 3D models are to be made available earlier in the process, generating them in JT format would have to performed separate from approving drawings, says Redinger – possibly with a restriction note or for a selected group of users.

In general, all employees with access to the PLM backbone also have access to the JT models. A simple JT viewer is available in SAP for displaying the models. The IT department provides fee-based visualization tools with an extended functional scope to users who want to use the JT data to carry out clash detection analysis for example. However, this only applies to internal users. In the case of suppliers, Brose recommends that they use the free JT2Go viewer. The company’s objective is to get all its suppliers to start using JT over the course of the next few months so that it can do away with manual conversion entirely.

It is not only the engineers who benefit from automatic JT conversion. “We are seeing significant savings in the downstream processes – thanks in part to the format’s clear-cut structure,” says Redinger. He expects additional benefits from more widespread use of JT data in other application scenarios such as review processes, which are currently performed on the basis of CATIA data. The availability of 3D data in SAP lays the groundwork for the digital master, which now of course needs to be rounded off with other information that fills any gaps.

By Udo Hering



© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise