Open side-bar Menu
 MCADCafe Editorial

Posts Tagged ‘MSC Software’

Metrology Meets Simulation: Hexagon Acquiring MSC Software

Thursday, February 2nd, 2017

This week MSC Software Corporation, the company that brought you such products as Nastran, Patran, Marc, and Apex, announced that it had reached an agreement to be purchased by Hexagon AB for $834 million cash. Like all corporate acquisitions, this one is subject to clearance and standard regulatory filings, and is expected to be completed in April. For more than 50 years MSC has been a leading provider of CAE solutions, primarily simulation software for virtual product and manufacturing process development, and was one of the first 10 commercial software companies.

With 2016 proforma sales of $230, MSC will continue to run as an independent business unit within Hexagon’s Manufacturing Intelligence (HMI) division. HMI’s main businesses are in the automotive, aerospace, machinery, consumer electronics, and other discrete manufacturing markets. Process-oriented solutions are essential for manufacturers, and MSC’s products address key design and engineering processes for CAE.


(more…)

Transforming CAE With MSC Apex Cheetah Release: Modeler and Structures

Thursday, July 16th, 2015

MSC Software Corp. recently announced a new release of MSC Apex, the company’s newest CAE platform. The MSC Apex Cheetah release introduces:

  • The third release of MSC Apex Modeler – A CAE Specific direct modeling and meshing solution that streamlines CAD clean-up, simplification, and meshing workflow.
  • The first release of MSC Apex Structures – An add-on to MSC Apex Modeler which now expands MSC Apex to a fully integrated and generative structural analysis solution.

Both MSC Apex products, Modeler and Structures are complementary to Patran and MSC Nastran, if you feel the need to go a step further in CAE. If you need this additional capability, the Apex products do not expose you intellectual property (IP) to those who have no business being exposed to it.

According to the company, the new release enhances workflow and daily productivity with several modeling and analysis capabilities, and gives you the ability to perform design analysis more comprehensively and easily.

To get a better feel for these claims, we spoke with said Hugues Jeancolas, MSC Apex Product Manager who said, “Cheetah is a milestone release for MSC Apex, now delivering its first solver integrated solution for interactive and incremental structural analysis. Modeling, validating, solving, and exploring designs has never been this efficient and easy. MSC Apex helps users to crush the amount of time that it normally takes to build and validate models, a task that does not add any value to the design process. This frees our users to focus on delivering not just acceptable designs but ones that are optimal – in an environment that is fun to use.”

CAE, fun to use? That may be a bit of a stretch, but the demos we have seen make the claim a bit easier to swallow.


MSC Apex Cheetah Release Overview
(more…)

MCAD Mystery: Whatever Happened To . . . ?

Wednesday, July 30th, 2014

If you’ve been around the technical/engineering software business as long as I have, as with any business, nothing stays the same. This includes founders, executives, and other major players who were once prominent in the industry, but for many reasons have moved on. Some, to other companies in the industry, some to other industries, and some who have just plain disappeared. History never stands still and the CAx industry is no exception.

Although it’s a bit dated and based on a research project, check out the video below for a very short recap on the history of CAD:

A Short History of CAD

During the coming weeks and months we’ll try and track down players who were formerly very prominent in the MCAD arena and see what they’re up to now. Some of these folks include:

  • John Walker – Autodesk
  • Mike Riddle – Autodesk
  • Carol Bartz – Autodesk
  • Dominic Gallello – Autodesk
  • Dick Harrison – PTC
  • Steve Walske – PTC
  • Jim Meadlock – Intergraph
  • Joe Costello – Think3
  • Pat Hanratty — MCS
  • Martin Newell – Ashlar
  • Jon Hirschtick – SolidWorks
  • John McEleney — SolidWorks
  • Jeff Ray – SolidWorks
  • Jason Lemon – SDRC
  • Fontaine Richardson – Applicon
  • John Wright – United Computing (later Unigraphics)
  • Thomas Curry – MSC Software
  • Robert Bean – CADKEY

Obviously, this list only scratches the surface of possibilities. If there is anyone currently or formerly renowned in the CAD/CAM/CAE/CAx industry you would like to see us track down and update what they’re up to, send an email to me at jeff@ibsystems.com with a subject line that reads, “Where Are They Now?”, and we’ll do our best to respond in an upcoming blog on a person’s whereabouts and more recent accomplishments.

(more…)

Jury Awards Millions For Simulation Software Misappropriation (and Misunderstanding?)

Thursday, April 17th, 2014

Earlier this week, MSC Software Corp. announced that a jury in the United States District Court for the Eastern District of Michigan found that Altair Engineering willfully and maliciously took MSC Software trade secrets (from Adams simulation software) to use in its MotionSolve product. In other words, the ruling spells out that Altair Engineering knowingly took MSC Software trade secrets with malicious intent.

Keep in mind, though, that this award was no slam-dunk, as the suit was first filed in July 2007 as MSC Software Corp. versus Altair Engineering Inc. The six-week trial ended with two days of jury deliberation.

The jury awarded MSC Software $26.1 million for misappropriation of trade secrets and breach of confidentiality agreements by Altair and two former MSC employees who are currently executives at Altair.

Jurors found that Altair had misappropriated some source code as well as concepts or processes that are used to write the code from MSC, and that the employees had also violated one or more non-solicitation, confidentiality, or severance agreements with MSC.

According to the lawsuit, after Altair hired some former MSC Software employees, Altair began developing a software product called MotionSolve that competed directly with MSC’s Adams/Solver.

MSC had previously alleged that at least eight employees had left MSC between 2005 and 2007 and took jobs at Altair. Five of those employee claims were dismissed prior to trial.

(more…)

Using Simulation for Accurately Modeling Fiber-Reinforced Composites

Monday, May 6th, 2013

Designing lighter products, whether they’re as large as jet liners or as small as mobile phones, has always been smart business. Less material means less cost and lower energy consumption, both in production and operation. Lower production costs mean higher profit margins for manufacturers. Lower operational costs lead to broader customer acceptance and higher market share.

These days, the “smart business” in lighter products has been upgraded to “essential ingredient.” Lower weight and material efficiency are mandatory for companies that expect to succeed in markets coping with volatile energy prices and increasing environmental regulations. Higher energy prices cause sharp swings in production costs. Manufacturing a product and its component materials means more predictable costs and higher profit margins.

End products are also subject to more scrutiny during their operational lives. Vehicles have to squeeze more miles out of every gallon to satisfy mandates such as U.S. corporate average fuel economy (CAFE) standards

 

For decades, making a product lighter meant optimizing designs to cut out mass that wasn’t needed to achieve engineering goals. Now, extensive use of fiber-reinforced composites has introduced a new weight-saving measure into product design. Especially in vehicle design but also in appliances and industrial machinery, composites offer comparable strength to metal at a fraction of the weight.

However, introducing composites into product design requires extensive testing. Composites’ plasticity means they do not perform as predictably as metals under real-world conditions. Many manufacturers qualify composites through extensive physical testing on prototypes. This is expensive, time consuming, and can be replaced by simulation – provided that simulation evolves to accommodate composites. Otherwise, they will not yield accurate material allowables, and inaccurate allowables can lead to poor product performance or outright failure.

Simulation technology has traditionally focused on metals. Composites, however, have different properties from metals. For example, a metal-stamped part will behave the same way regardless of how it is manufactured. By contrast, the manufacturing process can change a fiber-reinforced plastic part’s behavior significantly because the process can affect the orientation of the fibers in the material’s epoxy-resin matrix.

Those additional variables complicate engineers’ tasks. They can optimize a design for maximum lightness but end up with a different set of problems because the composite won’t perform the way they expected. Engineers must be able to simulate the strength of composites in different configurations and through various manufacturing processes down to the microstructure level. However, simulation technology hasn’t accommodated them so far.

Most simulation solutions depict composites as “black aluminum.” They represent a composite part’s geometry, but not the full range of its properties. Composite suppliers provide their customers with property data, but that data seldom takes into account the manufacturing process’ influence on the material. Entered into a simulation, these data points will not produce accurate results.

Without accurate material modeling and simulation, designers have to approximate how the composite will perform under real-world conditions. That often leads to over-designing to guard against failure. Over-designing undermines the purpose of designing with plastic or composite in the first place – using less material and reducing weight. It also adds unnecessary cost.

Many simulation technology vendors have incorporated some level of non-uniform material behavior into their solutions. However, these solutions only simulate composite behavior on the surface. A truly realistic model requires an intelligent handle on:

  • individual properties of the fiber and the matrix;
  • the composition of the overall materials; and
  • manufacturing processes’ influence.

Conventional simulation tools do an excellent job of modeling a party’s geometry, loading, deformation physics, etc.  Incorporating detailed material behavior for composites drives further precision into the simulation lifecycle.

Giving engineers that precision opens a new range of possibilities for making products lighter without sacrificing performance. For example, an automotive OEM wants to re-design a metal engine mount in composite to save weight. Design engineers develop the basic geometry for the new mount in a 3D CAD environment. The mount weighs 1.2 kilograms. Simulation reveals that the engine mount performs its function under normal loads and in normal operating conditions.

Through virtual simulations to analyze the composite’s behavior in that shape and function, the design team does a series of iterations, analyzes the mount’s performance, and reduces its mass by 40 percent without compromising performance. The lower mass shaves 15 percent from the mount’s cost.

This is what design teams can achieve when they have the tools to model and simulate composites with the same precision they have for simulating metals. It’s the approach that manufacturers need to incorporate in bringing composites into their designs while keeping prototyping costs. The result will be lower material use and energy consumption in production and operation, and more accurate material and part performance. These essential qualities will enable manufacturers to meet the new economic realities of rising energy costs and the societal obligations of sustainability through lighter, better products.

This article was contributed by Dr. Roger Assaker, PhD,  founder and CEO of e-Xstream Engineering, and also chief material strategist at MSC Software. Please see http://www.mscsoftware.com/product/digimat for more information.)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise