Open side-bar Menu
 MCADCafe Editorial

Posts Tagged ‘Desktop Metal’

Markforged Prevails In 3D Printer IP Lawsuit

Thursday, August 2nd, 2018

Markforged, a 3D printer manufacturer, announced this week that following a 21-day trial, a jury in the United States District Court, District of Massachusetts, Boston, unanimously found that Markforged did not infringe any claims of IP belonging to Desktop Metal, another developer of 3D printing machines.

Desktop Metal had filed a patent infringement lawsuit against rival metal 3D printing company Markforged. Markforged responded, saying it “categorically denies” the allegations. Markforged responded to those allegations, denying any wrongdoing and responded with its own court filings. Desktop Metal sought significant damages from Markforged.

Desktop Metal CEO Ric Fulop said: “We believe Markforged products clearly utilize technology patented by Desktop Metal and we will do what is necessary to protect our IP and our company.”

Desktop Metal had claimed that the manner in which the Markforged Metal X printer forms ceramic release layers in order to print complex parts infringed on their patents. After deliberating for less a day, the jury returned a complete non-infringement verdict, finding that Markforged did not infringe and had not induced or contributed to infringement by its customers.

In a nutshell, the lawsuit alleged that Markforged used Desktop Metal’s patented technologies on the Metal X 3D printer, specifically technologies relating to support structure breakaway.

The most relevant Desktop Metal patents, numbers 9,815,118 and 9,833,839, were first put to use in Desktop Metal’s Studio and Production 3D printing systems. In its legal complaint, Desktop Metal compares the patented technology to apparently similar technology used in Markforged’s Metal X 3D printer.

Other patents referenced in the case included:
9,815,118 – Fabricating multi-part assemblies
9,833,839 – Fabricating an interface layer for removable support
5,182,056 – Stereolithography method and apparatus employing various penetration depths
5,182,170 – Method of producing parts by selective beam interaction of powder with gas phase reactant
5,204,055 – Three-dimensional printing techniques
5,242,098 – Method of explosively bonding composite metal structures
5,286,573 – Method and support structures for creation of objects by layer deposition
5,387,380 – Three-dimensional printing techniques
5,496,682 – Three dimensional sintered inorganic structures using photopolymerization

For Markforged, this verdict validates the history of independently developed IP that has fueled its year-over-year growth. To date, Markforged has 100 filed patent applications and 15 issued patents, the most recent of which – US Patent 10,000,011 – was issued last month.

Announced in 2017, the Markforged Metal X 3D printing system is transforming the way businesses approach their manufacturing operations, amidst a quickly growing metal 3D market that IDTechEx estimates will be worth $12B by 2028. Markforged Metal X customers print end-use parts that the company claims are 50% lighter and 95% faster than other part creation processes.

Greg Mark, founder and CEO of Markforged, said, “I founded Markforged in my kitchen six years ago. I dreamt of giving every engineer the ability to 3D print real, functional, mechanical parts. We invented something that had never existed before — a continuous carbon fiber 3D printer. Our Metal X product is an extension of that platform. We’ve come a long way. We now have the most advanced technology platform in 3D printing, and I’m incredibly proud of what our team of engineers have accomplished. A competitor filed a lawsuit against us, including various far-fetched allegations. Markforged categorically denies these allegations and we will be formally responding shortly in our own court filing”.

“Markforged printers have changed the way businesses produce strong parts while dramatically impacting the delivery times, cost, and supply chain logistics.” said Mark. “We feel gratified that the jury found we do not infringe, and confirmed that the Metal X, our latest extension of the Markforged printing platform, is based on our own proprietary Markforged technology.”

Something struck me as weird with this whole legal debacle. Ironically, the Desktop Metal CEO was on the Markforged board, he left and started Desktop Metal, and less than two years later Markforged announced the Metal X with prototype parts. Likely both parties had worked on this particular project for a while. I just wonder how much the Desktop Metal CEO knew before he left the Markforged board.

Although patent infringement lawsuits like this are nothing new, and will certainly continue, I’m torn. On the one hand, lawsuits like this do the industry no good. I wasn’t so sure the patents would hold up considering that using a binder that gets “sintered” out is not novel to 3D printers – that science has been around a long time. The fact they are pushing it out of a nozzle into shapes also does not make it unique.

On the other hand, to the extent these companies are relying on external investment, and to the extent patents mean the company experiences less competition and is worth more in case of liquidation, patents can accelerate the industry.

Desktop Metal has raised well over $200 million in investment, and obviously some of that was on the based of the value of its patents.

Ultimately, I wasn’t so sure the patents would hold up considering that using a binder that gets “sintered” out is not unique to 3D printers. A quick scan of the two patents in question makes them look a little deeper than just that. I’m not sure how unique they truly are, but it’s more than just “binder + sintering.” However, that does make it unique, as long as they properly reference prior art. That’s how patents work.

Without reading the independent claims of the patents in question, its impossible to know how good or bad the patents are. And unless you’re experienced in reading patents (either because you’ve been trained in it or are a patent attorney), it’s hard to really determine the specific set of claims, just because of how obtuse they’re written. I did a quick skim of the claims in both and didn’t see anything that seemed unusually broad, and they do reference a number of prior patents. One of them, for example, has a few independent claims, but they all are clones of the first one.

That’s not about sintering material with a binder, its specifically about how to do so with two parts in close proximity with them maintaining their mechanical association, but without becoming bound by the binder. All the dependent claims derive from that, and the other independent claims call out specific materials to use as the interface to prevent the bonding of the two sintered parts. That is not obvious, and is justifiably patentable.

We’ll be keeping a close eye on developments in the Desktop Metal versus Markforged case because it certainly won’t be the last.

SOLIDWORKS World 2018 Greatest Hits

Thursday, February 15th, 2018

As usual, last week at SOLIDWORKS World was very busy and we enjoyed every minute of it. During the event we talk to a lot of people during video interviews, on the exhibit floor, at conference sessions, classes, and really informally over coffee, dinner, or a beer. We talked about many things over the course of the conference, but usually came back to the common question, “What’s the most interesting thing you’ve seen on the exhibit floor?”

Below are what I considered to be among the most significant innovations put on display this year at SOLIDWORKS World 2018 (excluding SOLIDWORKS itself, of course) in four categories — hardware, software, service, and best of show.

 

Best Hardware: HP 300/500 Series 3D Printers – Capability and Affordability

HP Inc. expanded its 3D printing portfolio with the introduction of its new Jet Fusion 300/500 series of 3D printers that produce engineering-grade, functional parts in full color, black or white – with voxel (basically, a 3D pixel, where the position of each voxel is inferred based upon its position relative to other voxels) control – in a fraction of the time of other solutions per HP’s claims. Depending on configuration and color preference, the Jet Fusion 300/500 series is available starting in the $50,000s, which is impressive for the capabilities the machines offer.

“HP is committed to democratizing 3D design and manufacturing, unleashing new possibilities for millions of innovators around the world,” said Stephen Nigro, President of 3D Printing, HP Inc. “No matter your industry, no matter your design complexity, no matter what colors fit your business needs – black, white, or the full color spectrum – the new HP Jet Fusion 300/500 series gives you the freedom to create brilliant new parts liberated from the constraints of traditional production methods.”

HP’s unique ability to control part properties at the individual voxel level enables the design and production of previously unconceivable parts and is now available, for the first time, in full color. HP is already engaging in the co-development of new color applications with universities and businesses around the world including Phoenix Children’s Hospital, Yazaki Corp., and Youngstown State University, and others.

HP 300/500 Series 3D Printers Introduced

In addition to providing voxel-level control, the new Jet Fusion 300/500 series of 3D printers have a compact design, enhanced workflow, and the first integrated and automated materials delivery system, enabling greater unattended operation, ease of use, and dramatically increasing production efficiency and output. The Jet Fusion 300/500 series also supports the three leading color file formats (OBJ, VRML, and 3MF) enabling designers to reliably and easily produce the parts they want without file conversion or data corruption.

The HP Jet Fusion 300 / 500 series offerings include:

  • HP Jet Fusion 340 (Black and White) / 380 (Color): for customers who have smaller part-size needs or who commonly print fewer parts per build.
  • HP Jet Fusion 540 (Black and White) / 580 (Color): with a bigger build size than the 300 series for customers who have larger part-size needs or heavier production demands.

“I’m excited about the range of applications for functional multi-color 3D printing,” said Terry Wohlers, President, Wohlers Associates Inc. “It’s good to see that HP is targeting this interesting and largely untapped opportunity. The possibilities are infinite.”

The HP Jet Fusion 300/500 3D printers will launch with a new material, HP 3D High Reusability CB PA 12. Parts using this material will have mechanical properties similar to the HP 3D High Reusability PA 12 material from HP’s industrial solutions.

Leveraging HP’s unique Open Platform for materials and applications development, HP will work with its growing materials ecosystem to grow the material breadth and drive costs down. The Jet Fusion 300 / 500 series will ultimately support similar materials as the Jet Fusion 3200/4200/4210, and also support unique materials that enable color or other voxel-level capabilities.

The HP Jet Fusion 300/500 series of 3D printers is available for order today and will begin shipping in the second half of 2018. For complete details and technical specifications please visit HP.com/go/Color3DPrint.

At SOLIDWORKS World HP Inc. and Dassault Systèmes announced their collaboration to align future technology roadmaps to ensure that users have access to the latest design tools integrated with HP’s voxel-level technology, as well as design tools for new materials. This roadmap includes upcoming releases of the SOLIDWORKS portfolio to support the full-color capabilities of HP’s new Jet Fusion 300/500 series 3D printers. Both companies are also strong supporters of the 3MF standard to ensure reliable exchange of color information for 3D printing. They will continue to test, validate, and support 3MF for their solutions to assure accuracy of information exchange across the manufacturing workflow.

 

Best Software: 3DXpert – Direct Path From SOLIDWORKS To Additive Manufacturing

This was the toughest category because there so many noteworthy new and improved software products demonstrated. In the end, though, I found 3DXpert for SOLIDWORKS from 3D Systems to be one of the most compelling for a couple of reasons – first, for its capabilities; second, it’s a free add-in for SOLIDWORKS subscribers. Free? I was surprised, too. The free version is called the Standard Edition, and the Pro Edition with additional capabilities is available for purchase.

3DXpert For SOLIDWORKS Overview

3DXpert for SOLIDWORKS is a complementary software for SOLIDWORKS, providing designers and engineers with everything needed to prepare and optimize designs for 3D printing. A click of a button in SOLIDWORKS brings native CAD data directly into 3DXpert for SOLIDWORKS and provides an extensive toolset to easily analyze, prepare and optimize designs for additive manufacturing. In other words, 3DXpert for SOLIDWORKS provides a direct path from SOLIDWORKS design to additive manufacturing and eliminates the need for a back and forth iterative process.

Some of the capabilities of 3DXpert include:

  • Native Data Transfer — click a button in SOLIDWORKS to continue working with your native CAD data (both solid and mesh) without conversion. Maintain data integrity including analytic geometry, part topology and color-coding. There is also automatic healing of both STL and B-rep (solids and surfaces) geometry when required.
  • Ensure Printable Geometry — Automated best fit – minimize printing time, supports and tray area usage. Shrinkage compensation – apply scaling to compensate for part shrinkage during build. Hybrid CAD – use direct modeling, parametric and history-based hybrid (B-rep and mesh) CAD tools to improve part printability
  • Optimize Structure – minimize weight and material usage and apply surface textures.
  • Design Supports – ensure quality 3D prints with minimal supports
  • Arrange Build Plate and Send To Print – optimize utilization of tray area and printer time

3DXpert for SOLIDWORKS is machine agnostic and can work with any printer and technology, although the product’s main focus is currently on powder bed metal (DMLS), however, the part positioning on tray, lattice design and send to print tools are suitable for any printer and technology. Dedicated supports’ functionality is optimized for powder bed metal (DMLS) and Fused Filament Fabrication (FFF, FDM, MJP). Support free technologies such as Selective Laser Sintering (SLS) and Plaster-Based Printing (PP, CJP) are supported as well.

In terms of exporting data to the 3D printer, 3DXpert for SOLIDWORKS can export slicing as CLI C0 contours to any machine that can read it. Geometry can also be sent to a 3D printer as mesh data in various formats (STL, 3MF, OBJ, VRML).

 

Best Service: Xometry – On-Demand Quoting and Manufacturing Services

Xometry is a company committed to bringing manufacturing back to the U.S. with its software platform for building a reliable and scalable manufacturing program. It employs a unique machine-learning approach that provides its customers with optimal manufacturing capabilities at the best price based on parameters input by customers.

Founded in 2014, Xometry is transforming American manufacturing through a proprietary software platform that provides on-demand manufacturing to a diverse customer base, ranging from startups to Fortune 100 companies. The platform provides an efficient way to source high-quality custom parts, with 24/7 access to instant pricing, expected lead time and manufacturability feedback that recommends best processes and practices. With well more than 100 manufacturing partners, the manufacturing capabilities include CNC machining, 3D printing, sheet metal forming and fabrication, and urethane casting with over 200 materials. Xometry’s customers include General Electric, MIT Lincoln Laboratory, NASA, and the United States Army.

Video Interview With Xometry at SOLIDWORKS World 2017

Xometry’s technology platform enables it to leverage the expertise and capacity of more than 200,000 manufacturers across the United States who have on average less than 20 employees. Xometry’s partners are spending less time bidding for new business and more time producing parts.

Xometry employs strict quality control to ensure it’s only offering up the best vendors. When a manufacturer initially signs up to join the network, Xometry screens the company by giving it only one job to complete. Instead of shipping the product directly to the customer, it’s first sent to Xometry; where their team assesses the quality of the product and whether it meets standards established by the customer and Xometry. Customers are also encouraged to rate their vendors based on their performance, and any manufacturers flagged for producing poor-quality products will receive additional scrutiny from Xometry.

Xometry’s capabilities are available as a free SOLIDWORKS Instant Quoting add-in that can be accessed directly from the SOLIDWORKS interface.

Some of the features available in the SOLIDWORKS add-in include:

  • Instantly price a design inside SOLIDWORKS
  • Feedback on how to best make the parts
  • Transparent and instant lead time estimation
  • Add notes and drawings to further specify part features, finishes, and tolerances
  • Order custom parts with one click
  • Adjust parts based on manufacturability analysis to avoid potential fabrication issues
  • Insight into pricing, lead-times, and manufacturability impacts for materials and processes
  • Re-quote directly in SOLIDWORKS to explore design iterations
  • Access manufacturability resources, guidelines, and knowledge base

Is Xometry the first company to explore the possibilities of on-demand manufacturing? Well, no, not exactly. However, we have been impressed with the company’s approach, growing partner network and customer base, relationship with SOLIDWORKS, and substantial financial connections that will help it continue down a bright path.

 

Best of Show: Desktop Metal Live Parts – Auto-Generate Optimized Part Designs

Although a technology preview right now, Desktop Metal Live Parts awed just about everyone who witnessed it being demonstrated, myself included.

Live Parts is an experimental technology that applies morphogenetic principles and advanced simulation to auto-generate part designs very quickly. Desktop Metal’s vision for Live Parts is to enable users to realize a new potential for additive manufacturing—including material and cost efficiency, as well as design flexibility.

Desktop Metal Live Parts Discussion

At this point, Live Parts is actually an explorative extension of generative design, a form-finding process that can mimic nature’s evolutionary approach to design.

Overview Of Adjusting Live Parts Cell Properties

Similar to how plants grow, there are no straight lines in parts except where needed for mounting regions, symmetries, or keep out zones. This makes them well suited for additive manufacturing processes, where typical design limitations don’t apply.

Some of Live Parts most notable capabilities include:

  • Real-time simulation of static and dynamic load – A GPU-accelerated multi-physics engine models parts as living organisms so that parts can be generated in real-time based on constraints and load conditions. Loads can be linear, radial, rotational, and dynamic.
  • Auto-generates designs in minutes – Nature-inspired algorithms drive Live Parts. Unlike topology optimization, no pre-existing part design is needed. Parts grow and adapt like plants and bones, changing shape to find the best form for their environment and function.
  • Integrated with SOLIDWORKS – Define constraints and forces inside the Live Parts for SolidWorks add-in before exporting to Live Parts for part generation. Parts can be exported back to SOLIDWORKS, auto-assembled, and further analyzed.

Very interesting and innovative technology from a relatively new company.

Editor’s Note: If you want to check out the video interviews we recorded at SOLIDWORKS World 2018, check out our website and click on videos.

 

And We Have A Winner!

At our exhibit booth last week at SOLIDWORKS World we encouraged attendees to drop a business card off for a chance to win an Amazon Echo with a random drawing at the end of the conference. We received a lot of business cards and the winner of our drawing was Victor Oswaldo Carreon.Victor is an electromechanical engineer working with Intelligy a SOLIDWORKS Value Added Reseller from Mexico, who specializes in data management. He says he went to SWW2018 to see the different solutions that SolidWorks will release in the future, as well as see the solutions that the partners offer to customers and resellers. Congratulations Victor!

Victor Oswaldo Carreon Won An Amazon Echo From MCADCafe At SOLIDWORKS World 2018

 

Good Week for 3D Printing

Thursday, December 21st, 2017

With 2017 winding down and the holidays upon us, MCAD news typically slows down big time. Not so this year, though, as two 3D printing manufacturers – Desktop Metal and Carbon – announced big news this week.

Desktop Metal Shipping Studio System

Just eight months after its initial introduction, Desktop Metal announced it has begun shipping its metal 3D printer to early pioneer customers as part of the Studio System rollout.

The Studio System, which debuted in May, is the first office-friendly metal 3D printing system for rapid prototyping and is 10 times less expensive than existing technology today. The Studio System is a complete platform, including a printer, a debinder, and a sintering furnace that, together, deliver metal 3D printed parts in an office or on the shop floor.

Participating in Desktop Metal’s Pioneers Program, Google’s Advanced Technology and Products (ATAP) group is the first pioneer to receive the Studio printer. Among the inaugural Pioneer customers in the program, companies span six industries – heavy machinery, consumer electronics, automotive, service bureaus, machine shops and government & education. Benchmark parts range from tooling, prototyping and jigs & fixtures, to end-use parts for functional applications.

Desktop Metal’s 3D Printer (video courtesy of TechCrunch)

“Since the launch of our Pioneers Program, we have seen really passionate engineers and world-class companies begin to develop benchmark metal 3D printed parts with the Studio System,” said Ric Fulop, CEO and co-founder of Desktop Metal. “We are extremely excited to begin shipping our Studio printer to these early pioneer customers and sales partners, including Google’s ATAP, and, over the next several months, will be working closely with each to learn more about how engineers want to use our system.”

(more…)

Desktop Metal Shows AM Mettle

Thursday, July 20th, 2017

These are the dog days of summer, the hottest part of the season in the Northern Hemisphere. It’s also one of the slowest times of the year for noteworthy “hot” news; MCAD included, politics excluded.

However, this week marked a very noteworthy bit of news: Desktop Metal announced it has completed a $115 million Series D investment round to further accelerate the company’s rapid business growth and adoption of its end-to-end metal 3D printing systems. Since its inception in October 2015, Desktop Metal has raised a total of $212 million in financing, with the Series D marking the largest individual private round for a metal additive manufacturing company.

Desktop Metal Studio System

The Series D round included significant new investment from New Enterprise Associates (NEA), GV (formerly Google Ventures), GE Ventures, Future Fund and Techtronic Industries (TTI), a leader in quality consumer, professional and industrial products, including Milwaukee Tool, AEG, Ryobi, Hoover, Oreck, VAX and Dirt Devil. Additional investors included Lowe’s, Lux Capital, Vertex Ventures, Moonrise Venture Partners, DCVC Opportunity, Tyche, Kleiner Perkins Caufield & Byers, Shenzhen Capital Group (SCGC), and Saudi Aramco.

With the Studio System, engineers can print complex, functional parts in a variety of materials, including copper. With its high electrical and thermal conductivity, copper is an ideal material for heat exchanger applications, like this copper heat sink for an LED light bulb. (Photo: Desktop Metal)

According to Ric Fulop, CEO and co-founder of Desktop Metal, the funding will help fuel the company’s speed to market, expand its sales programs, as well as progress the development of advanced R&D. The company is also exploring international expansion as early as 2018.

(more…)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise