Open side-bar Menu
 MCADCafe Editorial

Posts Tagged ‘artificial intelligence’

2024 Nvidia Outlook: The AI Revolution in Business, from Generative Models to Quantum Leaps

Wednesday, December 6th, 2023

NVIDIA AI experts predict rapid transformations across industries as companies accelerate AI rollouts and begin to build best practices for adopting generative AI.

by CLIFF EDWARDS

Move over, Merriam-Webster: Enterprises this year found plenty of candidates to add for word of the year. “Generative AI” and “generative pretrained transformer” were followed by terms such as “large language models” and “retrieval-augmented generation” (RAG) as whole industries turned their attention to transformative new technologies.

Generative AI started the year as a blip on the radar but ended with a splash. Many companies are sprinting to harness its ability to ingest text, voice and video to churn out new content that can revolutionize productivity, innovation and creativity.

Enterprises are riding the trend. Deep learning algorithms like OpenAI’s ChatGPT, further trained with corporate data, could add the equivalent of $2.6 trillion to $4.4 trillion annually across 63 business use cases, according to McKinsey & Company.

Yet managing massive amounts of internal data often has been cited as the biggest obstacle to scaling AI. Some NVIDIA experts in AI predict that 2024 will be all about phoning a friend — creating partnerships and collaborations with cloud service providers, data storage and analytical companies, and others with the know-how to handle, fine-tune and deploy big data efficiently.

Large language models are at the center of it all. NVIDIA experts say advancements in LLM research will increasingly be applied in business and enterprise applications. AI capabilities like RAG, autonomous intelligent agents and multimodal interactions will become more accessible and more easily deployed via virtually any platform.

(more…)

NVIDIA’s AI Computer Drives AVs

Thursday, October 19th, 2017

This week NVIDIA unveiled what it claims to be the world’s first artificial intelligence computer designed specifically to “drive” fully autonomous vehicles.

The new system, codenamed Pegasus, brings the NVIDIA® DRIVE™ PX AI computing platform for handling Level 5 driverless vehicles (Level 5 is ”steering wheel optional.” In other words, no human intervention is required, for example, a robotic taxi). NVIDIA DRIVE PX Pegasus can perform over 320 trillion operations per second — more than 10x the performance of its predecessor, NVIDIA DRIVE PX 2.

NVIDIA DRIVE PX Pegasus is intended to help make a new class of vehicles possible that can operate without a driver — fully autonomous vehicles without steering wheels, pedals, or mirrors, and interiors that feel more like a living room or office than a vehicle. They will arrive on demand to safely take passengers to their destinations, bringing mobility to everyone, including the elderly and disabled.

One of the driving forces behind autonomous vehicles is to recapture millions of hours of lost time that could be used by “drivers” (really passengers) to work, play, eat or sleep on their daily commutes. Theoretically, countless lives could be saved by vehicles that are never fatigued, impaired, or distracted — increasing road safety, reducing congestion, and possibly freeing up land currently used for parking lots.

Of the 225 partners developing on the NVIDIA DRIVE PX platform, more than 25 are developing fully autonomous robotaxis using NVIDIA CUDA GPUs. Today, their trunks resemble small data centers, loaded with racks of computers with server-class NVIDIA GPUs running deep learning, computer vision and parallel computing algorithms. Their size, power demands and cost make them impractical for production vehicles.

NVIDIA AI Vehicle Demonstration

The computational requirements of robotaxis are enormous — perceiving the world through high-resolution, 360-degree surround cameras and lidars, localizing the vehicle within centimeter accuracy, tracking vehicles and people around the car, and planning a safe and comfortable path to the destination. All this processing must be done with multiple levels of redundancy to ensure the highest level of safety. The computing demands of driverless vehicles are easily 50 to 100 times more intensive than the most advanced cars today with human drivers.

(more…)




© 2024 Internet Business Systems, Inc.
670 Aberdeen Way, Milpitas, CA 95035
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise