
38 ArcUser Winter 2010										 www.esri.com

Test
Fixture
Class

Report

Check results

Call method

Check results

Call method

Class
Under
Test

Instantiate Class Under TestWhile some may hope that this column might
define unit testing as a component of the
software development process that we, as
geo-developers, are allowed to ignore, our
contention is that it is a critical component in
any GIS software development effort. It is a
facet of development that cannot be ignored.
	 An informal industry survey performed
in 2008 by one of the coauthors of this col-
umn revealed that 48 percent of developers in
the GIS industry do not write any unit tests.
This statistic, when paired with the fact that
maintenance costs for custom development
projects typically exceed 50 percent of project
life cycle costs, indicates that testing standards
require a bit of attention in the GIS industry.
	 The basic principle underlying unit testing
is simply to take the smallest executable seg-
ments of code—typically at the method lev-
el—and prove that the code works as expected
under as many anticipated circumstances as
possible. Most often this process is performed
by writing code that can be repeatedly execut-
ed using an automated testing framework such
as NUnit or MbUnit. While there are other
methods, the primary reasons for this auto-
mated testing regimen are threefold:
	The developer must prove that custom code
	 works.
	The developer must prove the overall de-
	 sign works (e.g., follows good OOP/OOD
	 practices, separation of concerns, single
	 purpose classes).
	The developer must have a concise and
	 rapid means of tracking and managing re-
	 gression as the code base evolves.
	 At the conceptual level, the unit testing
process is very simple and is illustrated in
Figure 1. In a typical scenario, a test class is
written that instantiates a class to be tested.
The test fixture class calls methods on the
class under test and validates the results of
those method calls. Most automated testing
frameworks will prepare a report of test results
so the developer can quickly identify and ad-
dress problem areas in the code.

Designing ArcObjects Applications and
Complex Testing Scenarios
Simple methods with simple arguments mean
simple unit test fixtures. Nearly everyone
reading this article will understand that test-
ing a summing function, a user authentication
routine, or a method to fetch data is a relative-
ly straightforward process. At the same time,
testing complex methods that accept complex
inputs results in complex test fixtures with re-
sults that are frequently difficult to reduce to a
Boolean good or bad result.
	 While the authors work primarily in the
Web realm on a daily basis, we have writ-
ten literally hundreds of thousands of lines of
ArcObjects code over the years and recognize
the integral role such applications will continue
to play in the GIS enterprise for the foreseeable
future. Unit testing these applications is criti-
cal. Most ArcObjects code falls into the second,
more complex, testing category. For example,
how does the developer test that a custom edit
sketch task returned a valid geometry or that
the resulting geometry intersected with a target
layer to return the correct number of features?
	 The first step in effective unit testing of

ArcObjects applications is designing the appli-
cation using patterns that facilitate unit testing
from the start. In general this means following
good object-oriented design patterns as shown
in the diagram in Figure 2.
	 Methods should be single purpose and
have no side effects or reliance on global vari-
ables (IApplication, for example). Wherever
possible, application logic should be separated
from eventing and the general “wiring” that
makes the application go.
	 In the case of ArcGIS Desktop applica-
tions, the developer must be careful to sepa-
rate ArcMap from ArcObjects. Keep custom
code out of the ArcMap event handlers and en-
capsulate logic in business objects and utility
classes that can be independently instantiated
and tested. Conversely, keep event delegates
and sinks out of your custom logic. Let’s just
all agree that ArcMap is going to raise that
OnSketchFinished event and the .NET CLR
is going to pass it off to your delegate. If
they don’t, what are you going to do about it?

Figure 1: Basic unit testing scenario

Unit Testing for ESRI Developers
A test case for ArcUnit

By Brian Noyle and David Bouwman, DTSAgile

www.esri.com										 ArcUser Winter 2010 39

UI

BO

Code directly in
event handlers

Very dif�cult to
test—can’t simply
call functions

Most code is in
business objects

UI just wires
BO together

UI

DAL

Thick UI Thin UI

DAL

Test
Fixture

Simply pass needed data into your custom
classes from your unit test fixtures and vali-
date what you have control over.
	 For stand-alone ArcGIS Engine and
ArcGIS Server applications, the developer typ-
ically controls all the code so a custom app.
will typically already contain code to create
an instance of everything a unit test needs.
While there is no IApplication lurking in the
background to muddy the waters, validation
of custom functions is still complex because
we still need a way to validate a geometry or
a feature class.
	 When developing applications for ArcGIS
Server, custom code should be kept out of
code-behind files and *.asmx files. This allows
migration of custom components to the server
object container (SOC) and will increase ease
of unit testing.

Unit Testing Geometry Operations:
A Test Case for ArcUnit
No matter how much we design for unit test-
ing, we are still faced with the problems of
how to collect the needed objects/data to pass

“Left” XML File

“Right” XML File

in to a test method (feature class, geometry)
and how to validate the results of the test (e.g.,
check that a given geometry result is correct).
ArcUnit, a community-based open source pro-
ject, provides tools and utilities to address
this need. Currently hosted on Assembla at
http://svn2.assembla.com/svn/arcdeveloper/
TestingUtilities, the ArcUnit effort consists of
a series of utility classes and tools designed
and implemented to assist the developer in
manipulating and validating data when unit
testing ArcObjects code. These tools can be
freely downloaded by developers who are en-
couraged to use the tools provided and con-
tribute new functionality for the benefit of the
developer community.
	 The ArcUnit code base has been started
with tools and utility classes to unit test cus-
tom geometry editing functions. To date,
the effort has focused on how to simulate
sketches, store and retrieve geometries, and
create tests against independent datasets not
tied to a specific instance of a geodatabase.
A custom ArcGIS Editor extension and tool-
bar are included in the source code, as well
as utilities for serializing and deserializing
ArcObjects and classes to simulate commonly Figure 3: Using ArcUnit custom editing toolbar to serialize geometries for use in unit tests

Figure 2: Proper abstraction of
business logic away from UI and event
handlers to facilitate testing

Continued on page 40

A test case for ArcUnit

Developer’s Corner

40 ArcUser Winter 2010										 www.esri.com

Unit Testing for ESRI Developers
Continued from page 39

used ArcObjects interfaces such as IFeature-
Class and IObjectClass.

Using ArcUnit
As a test case for illustrating how to use
ArcUnit utilities, assume that a developer must
validate a custom Split Polygon edit task in
ArcMap. Using the design principles discussed
above, the developer separates the implemen-
tation of the polygon split from the eventing in
ArcMap. To test the custom logic of the split
edit task, the developer now needs
	A source polygon to be split
	A polyline to be used to cut the source
	 polygon
	 The resulting “pieces” from the split 	
	 operation to use for validation
	 A series of invalid polylines to test nega-	
	 tive split cases
	 How might the developer get the informa-
tion required for effective unit testing without
being tied to user interaction and a geodata-
base instance? The answer lies in the IXML-
Serialize interface. More than 200 ArcObjects
classes implement this interface (including
many aspects of the geodatabase), and any of
these objects can be stored as an XML repre-
sentation. A custom editing toolbar supplied in
the ArcUnit source code allows a developer to
serialize sketch geometries or selected geom-
etries from a map and load/draw geometries
from existing XML files as shown in Figure 3.
	 The basic workflow for unit testing geom-
etry operations with ArcUnit is simple. Us-
ing the ArcUnit editing toolbar in ArcMap,

needed geometries are created and serial-
ized into XML files for use within unit test
fixtures. The resulting XML files are then
stored as embedded resources within the unit
testing project inside a Visual Studio solu-
tion (illustrated in Figure 4), so that they are
source controlled and have no dependency on
user action within ArcMap or on a specific
instance of a geodatabase.
	 To write unit tests to validate the geom-
etry operations involved in the Split Polygon

Conclusion
The authors have generally found unit test cov-
erage for custom GIS development initiatives
within the ESRI realm to be comparatively low
relative to other software sectors. In defense
of the geodeveloper community, unit testing
for ESRI applications presents a special case
where typical spatial operations are complex
and difficult to test without dependencies on
the containing application, user interaction
via the GUI, and geodatabase instances. We
believe that unit testing is still a critical com-
ponent of our custom development efforts and
that the ArcUnit initiative can serve as a start-
ing point for a whole host of mock objects,
data serialization/deserialization routines, and
test patterns that will assist the community
in guaranteeing high-quality code against the
ESRI COM-based APIs by providing a library
of functions covering many common GIS test-
ing scenarios.
	 For more information, contact
Brian Noyle, Senior Software Architect
DTSAgile
Fort Collins, Colorado
E-mail: bnoyle@dtsagile.com

David Bouwman, CTO and Lead
Software Architect
DTSAgile
Fort Collins, Colorado
E-mail: dbouwman@dtsagile.com

Figure 5: Test source code for the Split Polygon edit task in the test case leverages GeometryStorage and GeometryRelations utility classes
included with ArcUnit to assist with serialization/deserialization and unit test assertions, respectively.

Figure 4:
Captured
geometries are
serialized as
XML and used
as embedded
resources in
the test project.

edit task test case, serialized geometries are
loaded from resource files at test startup and
passed-into a function under test from within
an individual unit test, and output geometries
are compared using IRelationalOperation::
Equals(). The test source code example
shown in Figure 5 leverages Geometry-
Storage and GeometryRelations utility
classes included with ArcUnit to assist with
serialization/deserialization and unit test as-
sertions, respectively.

www.esri.com										 ArcUser Winter 2010 41

About the Authors
Brian Noyle

Originally trained as a
global change biologist
and tundra botanist,
Brian Noyle has nearly
10 years’ experience
as a GIS software de-
veloper and architect.
His professional and
technical interests are
primarily focused on
moving clients toward

more standard architecture and development
practices and patterns to facilitate a closer
integration of GIS with the standard IT enter-
prise. Noyle has extensive experience in full
software life cycle management with a focus
on delivering through Agile project manage-
ment methods. When he’s not in the office, he
can be found on his mountain bike, picking a
bluegrass lick on a guitar, or standing in a river
waving a stick at amused trout.

Dave Bouwman
Dave Bouwman has
been designing and de-
veloping GIS software
for the last 12 years
with projects ranging
from small Web sites
to statewide enter-
prise forest manage-
ment systems. Over
the last few years,
he has been leading a

team of developers in the pursuit of great soft-
ware built in a sane manner. The combination
of an Agile process with pragmatic develop-
ment practices taken from extreme program-
ming has led to a highly optimized methodol-
ogy of creating solid software that he and his
staff are proud to put their names on. When
not attached to a computer, Bouwman is of-
ten found mountain biking on the trails around
Fort Collins, Colorado.

Developer’s Corner

Join us at the
ESRI Developer Summit

March 22–25, 2010
Palm Springs, CA

www.esri.com/devsummit

Run Smarter®

By integrating their Laserfiche® enterprise content management
and ESRI® GIS systems, the City of Bakersfield saved over $18,000
in personnel hours and $163,000 in staffing costs.

Discover how Laserfiche integrates with ESRI GIS software to bring
a world of information to staff and citizens.

©
 2009 Laserfiche. Laserfiche is a registered tradem

ark of C
om

pulink M
anagem

ent C
enter, Inc.

Our Web-based ESRI/Laserfiche integration

is so intuitive, members of the public can

search for information themselves, freeing

up our staff to complete their regular

workload without interruption.”

— Thomas Trammell, Engineer Tech
City of Bakersfield, CA

Explore More
laserfiche.com/arc

Call a Solutions Specialist
800-985-8533

