Fluent Software Models Soccer Ball Trajectory

LEBANON, N.H.—(BUSINESS WIRE)—May 30, 2006— Fluent Inc., a wholly-owned subsidiary of ANSYS, Inc. (NASDAQ: ANSS), a global innovator of simulation software and technologies designed to optimize product development processes, today announced the results of pioneering work at the University of Sheffield in collaboration with Fluent Europe Ltd.

As the soccer world cup fast approaches, teams compete for the slightest of advantages that could spell the difference between victory and defeat. This year's competition promises to showcase swerving kicks which often decide the outcome of the match. Some of the world's greatest goalkeepers have been beaten by unusual swerving balls which move to the left and the right before hitting the back of the net, even though they have little or no spin applied to them. The new research has found that the shape and surface of the ball, as well as its initial orientation, is critical in terms of its trajectory through the air.

A team of researchers, led by Dr Matt Carre at the Department of Mechanical Engineering at the University of Sheffield, used the most advanced software, known as Computational Fluid Dynamics (CFD), for simulating the physics of airflows in and around objects. They studied and compared airflows around four balls, all with different panel designs, each having been used at different periods over the past 36 years, up to, and including the new adidas ball to be used in the 2006 World Cup.

University PhD student and Sheffield FC player Sarah Barber, alongside Dave Mann, Principal Engineer at Fluent, used a 3D laser scanner, similar to those used in Formula 1 motor racing, to obtain accurate surface detail of each individual ball, including their stitches and seam patterns. They demonstrated that the shape, surface and asymmetry of the ball, as well as its initial orientation, has a profound effect on how the ball moves through the air after it is kicked. The side force varies according to the orientation of the ball relative to its flight, meaning that for a kick where the ball is slowly rotating, the side force could fluctuate causing it to swerve. Ultimately the nature of the swerve is affected by the initial orientation of the ball before it is kicked.

In collaboration with Dr Takeshi Asai at the University of Tsukuba in Japan, the team used wind tunnel measurements to verify their CFD studies and demonstrated that in match conditions the drag of non-spinning soccer balls has fallen by as much as 30% over the last 36 years. Newer balls, like the one to be used in the World Cup this summer, which manufacturers claim to be rounder and which have more uniform seam geometry, have been found to be more consistent in high speed kicks with little or no spin.

Commenting on these new findings, Dr Carre said: "Our work clearly points to the fact that any non-uniformity of design of soccer balls, or asymmetry of manufacture, will have a dramatic effect on the side forces of the ball when there's little or no spin applied to it, and hence its swerve through the air."

"We believe that our findings go a long way to explain the phenomenon observed when some players kick the ball with little or no spin, yet get it to swerve in a seemingly erratic manner - possibly producing an 'S' shape trajectory."

Sarah Barber added: "As a soccer player I feel this research is invaluable in order for players to be able to optimise their kicking strategies. This knowledge could further be utilised by manufacturers to design future balls which will ultimately enhance the overall experience for players and spectators at all levels of the game."

The aerodynamics of the soccer ball is not the only science to be examined in the weeks leading up to the World Cup. The first game of the 2006 World Cup on 9 June will take place in the purpose built FIFA World Cup Stadium in Munich, home to both Bayern Munich FC and TSV Munich 1860. The stadium was designed by the Swiss architects Jacques Duke and Pierre de Meuron, with the quality of the pitch in mind, because of a desire to have uniform airflows going over the turf when the stadium doors are open. These air movements help to ensure that the pitch grass will have optimal growing conditions between matches. Dresden based consultant, Dr. Peter Vogel of GTD GmbH used CFD software from Fluent to study the airflow in the stadium to validate its design. He was able to verify that the stadium experience is the best possible for the crowd and that the architects' visionary design conforms to high safety standards. His detailed virtual flow simulations illustrate perfectly the relatively gentle airflow patterns players will experience near the pitch surface in the space above the playing area during a game.

Commenting on all these studies from around the world, Dr. H. Ferit Boysan, vice president and general manager at ANSYS, suggests that: "It is becoming more and more obvious that the aerodynamic performance of a soccer ball is very closely linked to its design and manufacture as witnessed by these initial Sheffield studies. Dr Carre and Dr Vogel's work is clearly pointing towards modern computer based simulation techniques permitting us to model any kick, of any ball, in any stadium, such that we will be able to get a prediction of what will happen before a ball is even kicked! This will open up whole new directions for the design and development of soccer balls as well as stadia."

Notes for editors:

For images and pictures associated with this News Release please visit this website:

http://www.fluent.com/news/pr/pr132.htm

Dr Carre's Sports Engineering research group is hosted in the Mechanical Engineering Department at the University of Sheffield, England. The group has world-class expertise in sports ball and pitch aerodynamics using various experimental and computer modelling techniques and is closely involved with the International Sports Engineering Association (ISEA) and SportsPulse.

Fluent, Inc., a wholly owned subsidiary of ANSYS, Inc., (Nasdaq: ANSS), is the world's largest provider of Computational Fluid Dynamics (CFD) software and consulting services. Fluent's software is used for simulation, visualization, and prediction of fluid flow, heat and mass transfer, and chemical reactions. It is a vital part of the computer-aided engineering (CAE) process for companies around the world and in almost every manufacturing industry including aerospace, automotive and process industries. Fluent's CFD software has been used extensively in competitive sports ranging from Motor Racing through Olympic Sports to America's Cup Yachting. Additional information on Fluent's products can be obtained on the World Wide Web at www.fluent.com.

About ANSYS

ANSYS, Inc., founded in 1970, develops and globally markets engineering simulation software and technologies widely used by engineers and designers across a broad spectrum of industries. The Company focuses on the development of open and flexible solutions that enable users to analyze designs directly on the desktop, providing a common platform for fast, efficient and cost- conscious product development, from design concept to final-stage testing and validation. The Company and its global network of channel partners provide sales, support and training for customers. Headquartered in Canonsburg, Pennsylvania, U.S.A. with more than 40 strategic sales locations throughout the world, ANSYS, Inc. and its subsidiaries employ approximately 1,350 people and distribute ANSYS products through a network of channel partners in over 40 countries. Visit http://www.ansys.com for more information.

ANSYS and FLUENT and any and all ANSYS, Inc. product and service names are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the United States or other countries. All other trademarks or registered trademarks are the property of their respective owners.



Contact:
Fluent Inc.
Jennifer Correa, 603-643-2600 Ext. 668

Email Contact

Rating:


Review Article Be the first to review this article

Featured Video
Editorial
Jeff RoweJeff's MCAD Blogging
by Jeff Rowe
Siemens Goes ECAD With Mentor Graphics Acquisition
Jobs
Mechanical Engineer for IDEX Corporation at West Jordan,, UT
GIS Analyst II for Air Worldwide at Boston, MA
Senior Structural Engineer for Design Everest at San Francisco, CA
Business Partner Manager for Cityworks - Azteca Systems, LLC at Sandy, UT
Upcoming Events
Design & Manufacturing, Feb 7 - 9, 2017 Anaheim Convention Center, Anaheim, CA at Anaheim Convention Center Anaheim CA - Feb 7 - 9, 2017
Innorobo 2017 at Docks de Paris Paris France - May 16 - 18, 2017
Display Week 2017 at Los Angeles Convention Center 1201 S Figueroa St Los Angeles CA - May 21 - 26, 2017
SolidCAM: Program your CNCs directly inside your existing CAD system.



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise