LMS Virtual.Lab Motion Rev 5 introduces new Auto-Recursive Solver

Highly efficient and accurate solver solution records up to 60% time savings in solving complex simulation models

Leuven, Belgium - September 20, 2005 - LMS International, the engineering innovation company, announced the extension of LMS Virtual.Lab Motion with breakthrough solver technologies and new modeling capabilities to simulate real-life system dynamics. The new Auto-Recursive Solver records up to 60% time savings in solving complex simulation models with long series of linked components and high number of contact points between components. This eliminates the calculation bottleneck for the simulation of the dynamic behavior of timing chains, belts, tracked vehicles, complex production machines, etc. As a result, LMS Virtual.Lab Motion allows users to accurately simulate the internal forces and accelerations of these mechanisms, which are typically very difficult to measure through prototype tests.

The new Auto-Recursive Solver takes advantage of repeated bodies connected by revolute, rev-rev, or rev-trans kinematic constraints. When this topology is present in a model, it can be exploited to solve the acceleration terms more efficiently compared to a traditional motion solver based on Cartesian equations. LMS Virtual.Lab Motion offers a unique implementation of the Auto-Recursive Solver, since it coexists with the traditional motion solver in a single, integrated solution. The user herewith benefits from the performance and accuracy benefits of both solver solutions combined in a single simulation model. LMS Virtual.Lab Motion Rev 5 combines the deployment of the Auto-Recursive Solver with a new Sub Mechanisms capability. This new feature introduces a building block approach to efficiently model and simulate complex mechanism models like an engine valve train or a tracked vehicle. It intelligently avoids the usage of redundant geometry information when repeated elements are involved. This makes the resulting simulation models smaller and more efficient to solve, resulting in less memory consumption and faster calculation runs.

With Rev 5, LMS Virtual.Lab Motion also gains a reliable and efficient algorithm to compute the contact forces and local deformation of a flexible body intermittently hitting a rigid sphere. This allows engineering teams to take local deformation in contact regions into account, and to add another real life dimension to motion simulation. Typical applications for this new functionality include sunroofs, roller bearings, telescopic shafts, valves, timing chains, elevators, aircraft wing flap, latch mechanisms, etc.

"LMS Virtual.Lab Motion offers a complete and integrated solution to realistically simulate the dynamics of mechanical systems, and accurately determine the resulting internal dynamic loads and stresses," commented Willy Bakkers, Executive Vice-President and General Manager of the LMS CAE Division. "With the introduction of Rev 5, LMS Virtual.Lab Motion gains new solver capabilities and efficient modeling techniques for the simulation of complex mechanical assemblies. LMS Virtual.Lab Motion herewith extends its capabilities to accurately simulate the dynamic performance of new designs early in the development cycle."

About LMS:

LMS is an engineering innovation partner for companies in the automotive, aerospace and other advanced manufacturing industries. LMS enables its customers to get better products faster to market, and to turn superior process efficiency to their strategic competitive advantage. LMS delivers a unique combination of virtual simulation software, testing systems, and engineering services. We are focused on the mission critical performance attributes in key manufacturing industries, including structural integrity, handling, safety, reliability, comfort and sound quality. Through our technology, people and over 25 years of experience, LMS has become the partner of choice for most of the leading discrete manufacturing companies worldwide. LMS, a Dassault Systèmes Gold Partner, is certified to ISO9001:2000 quality standards and operates through a network of subsidiaries and representatives in key locations around the world.

LMS Press Contacts:

Bruno Massa
LMS International
Tel +32 16 384 200

United States:
Kimberly Winkler
LMS North America
Tel +1 248 952 5664

Kerstin Schwenk
LMS Deutschland
Tel +49 7152 97 97 90

Myriam Degroux
LMS France
Tel 01 69 35 19 20

Maki Hisano
LMS Japan
Tel +81 45 478 4800

Susan Wu
LMS China
Tel +86 10 8497 6463
Eun Young Suk
LMS Korea
Tel +82 2 571 7246

Kim Winkler
Marketing Manager
Phone: 248-952-5664 x. 139
Fax: 248-952-1610
Web: www.lmsintl.com

Review Article Be the first to review this article
Autodesk - DelCAM

Featured Video
Jeff RoweJeff's MCAD Blogging
by Jeff Rowe
Bricsys Insights: ACAD to BCAD
Solidworks Product Designer for NASCENT Technology at Charlotte, NC
SYSTEMS INTEGRATOR for Palm Beach County Human Resources at West Palm Beach, FL
Developer-Support-Implementation Engineer for EDA Careers at San Francisco Area, CA
CAD/CAM Regional Account Manager (Pacific Northwest) for Vero Software Inc. at Seattle, WA
Upcoming Events
AI·GI·CRV Conference 2017 at Edmonton, Alberta Canada - May 16 - 19, 2017
Innorobo 2017 at Docks de Paris Paris France - May 16 - 18, 2017
Display Week 2017 at Los Angeles Convention Center 1201 S Figueroa St Los Angeles CA - May 21 - 26, 2017
LiveWorx Tech Conf 2017 at Boston MA - May 22 - 25, 2017

Internet Business Systems © 2017 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise