Toshiba Launches Low Power Consumption ICs for Bluetooth® Smart Communication Devices with NFC Tag functions

Incorporating Two Kinds of Communication Functions for Wearable Healthcare Low Power Devices

TOKYO — (BUSINESS WIRE) — September 24, 2014Toshiba Corporation (TOKYO:6502) today announced the launch of “TC35670FTG”, a low power consumption dual function IC that supports both Bluetooth® Low Energy (LE)[1] communications and NFC Type 3 Tag. Sample shipments start today.

Toshiba launches low power consumption ICs "TC35670FTG" for Bluetooth(R) Smart communication devices ...

Toshiba launches low power consumption ICs "TC35670FTG" for Bluetooth(R) Smart communication devices with NFC Tag functions (Photo: Business Wire)

Recently, more and more Bluetooth® Smart[2] devices offer Bluetooth® LE compatibility. The new IC joins Toshiba’s line-up of Bluetooth® LE ICs, and offer two key features: easy operation of Bluetooth® pairing with NFC Tag function; long-time stand-by status for devices powered by small coin-cell batteries. The IC will facilitate adoption of Bluetooth® LE communications in small devices, such as wearable healthcare devices, sensors, toys and, most notably, future touch and start smartphone accessories.

Previously, set makers had to integrate ICs for both Bluetooth® and NFC Tag when designing a system supporting both communication functions. Toshiba’s new approach offers a design that will help to minimize the part counts, reduce the assembly area by about 30% and shorten system development.

The NFC Tag component has a 1.5 Kbyte E2PROM for storing data that set makers can access using both the Bluetooth® LE and NFC Tag to connect each I2C interfaces, allowing data to be easily handled in each system.

These functionalities allow the new device to support three ways of use:
1.  

Put both Bluetooth® LE and NFC Tag in stand-by mode and prioritize the connection from the 1st access.

2. By adding NFC Tag function, easy pairing of Bluetooth® LE devices can be realized and a long time stand-by status can be maintained.
3. The NFC Tag can provide a system on/off switch function, and cut off the hardware switch from a lot of devices that are required to reduce stand-by power.
 

Key Features of the New Product

  • Low power consumption:
    • Below 5.9mA at peak consumption of Bluetooth® communication (@3.3V, -4dBm transmitter output power or receiver operation)
    • Below 600μA for NFC Tag communication (@3.3V)
    • Below 0.5μA in deep sleep (@3.3V)[3]
  • Receiver sensitivity: -92.5dBm
  • Supports Bluetooth® LE central and peripheral devices
  • Supports servers and client functions defined by GATT (Generic Attribute Profile)
  • NFC Forum Type 3 Tag

1 | 2 | 3  Next Page »



Review Article Be the first to review this article
Rand3D

Featured Video
Jobs
Sr Mechanical Design Engineer for Medtronic at mounds view, MN
Mechanical Design Engineer 3 for KLA-Tencor at Milpitas, CA
Senior Mechanical Engineer for BAE Systems Intelligence & Security at Arlington, VA
Geospatial Analyst - Senior for BAE Systems Intelligence & Security at Springfield, VA
Geospatial Systems Administrator for BAE Systems Intelligence & Security at arnold, MO
Urban Designer - Urban Design/Planning for SERA Architects, Inc at Portland, OR
Upcoming Events
ESPRIT World 2018 at Indianapolis Marriott Downtown 350 West Maryland Street Indianapolis IN - Jun 11 - 15, 2018
HxGN LIVE 2018 at The Venetian Las Vegas NV - Jun 12 - 15, 2018
IMTS2018 International Manufacturing Tech Show at McCormick Place Chicago IL - Sep 10 - 15, 2018
Kenesto: 30 day trial



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise