TOSHIBA DEVELOPS COMPACT MOS-VARACTOR SIMULATION MODEL FOR DEVELOPMENT OF CMOS MILLIMETER WAVE CIRCUITS

- Good Accuracy from DC to Millimeter with a Single Model -

TOKYO -- December 17, 2012 -- Toshiba Corporation (TOKYO: 6502) today announced the development of a compact MOS-Varactor(1) simulation model that delivers high level accuracy from DC to the millimeter wave (60 GHz) region. The new model was developed in cooperation with Professor Nobuyuki Itoh of Okayama Prefectural University.

The new compact MOS-Varactor model introduces an original algorithm to express scaling effects and can capture the impacts of parasitic effects that dominate in the 60 GHz region. Measurement parameters from 1MHz to 60 GHz for samples with different cell sizes were used for modeling. In general, it is difficult to express MOS-Varactor with a single model, but this newly developed model fully succeeds.

The new model's accurate capture of parasitic effects supports realization of low power consumption in RF-CMOS products, and Toshiba will use it a basic technology for developing such chips, key devices of the company’s Analog and Imaging IC Division. Building on the work done so far, Toshiba expects to secure accurate simulation of CMOS millimeter wave circuits in the future.

The new model has been verified with samples with cell lengths ranging from 0.26 µm to 2.0 µm formed with Toshiba's 65nm RF-CMOS technology. Very good accuracy for all cell sizes was achieved from DC to 67 GHz.

Verification of this model was made on a 60GHz circuit. Phase noise level dependency on the control voltage of the 60 GHz VCO was measured and compared with a circuit simulation, with this model used in the frequency tuning block. Measurement accuracy was found to be 8 dB better than with the conventional model(2).

These development results were presented at APMC, the Asia-Pacific Microwave Conference, held in Taiwan from December 4 to 7.

  • 1. MOS (Metal oxide Semiconductor)-Varactor is a planar device, conventionally fabricated in CMOS technology. Generally, it is widely used in the frequency tuning block of the CMOS VCO (Voltage Controlled Oscillator) circuits.
  • 2. BSIM (Berkeley Short-channel IGFET Model) is the conventional model generally utilized in simulating MOS-Varactor. It was developed by the University of California, Berkeley.



Review Article Be the first to review this article
SolidCAM: Program your CNCs directly inside your existing CAD system.


Featured Video
Editorial
Jeff RoweJeff's MCAD Blogging
by Jeff Rowe
Re-Use Your CAD: The ModelCHECK Handbook
Jobs
Business Partner Manager for Cityworks - Azteca Systems, LLC at Sandy, UT
Senior Structural Engineer for Design Everest at San Francisco, CA
GIS Analyst II for Air Worldwide at Boston, MA
Upcoming Events
Design & Manufacturing, Feb 7 - 9, 2017 Anaheim Convention Center, Anaheim, CA at Anaheim Convention Center Anaheim CA - Feb 7 - 9, 2017
Innorobo 2017 at Docks de Paris Paris France - May 16 - 18, 2017
Display Week 2017 at Los Angeles Convention Center 1201 S Figueroa St Los Angeles CA - May 21 - 26, 2017



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise