CHAPTER 5

Chopping: a technique for noise and offset reduction


Prev TOC Next

5.3. Chopping seen as a modulation technique

Another method for noise and offset reduction is the chopping technique. Chopping is a modulation technique which shifts the spectra of low frequency stationary processes at multiples of chopper frequency out of the band of interest. To understand this, consider a stationary random process x(t) of autocorrelation function Rxx(t) and power spectral density Sxx(f) which is applied to a band limited amplifier A(f) as illustrated in fig.5.4. The modulation signal (chopper signal) m(t) is periodic with a period T and can be expanded in Fourier series:

(5.8)

The Fourier transform of this signal is a sequence of Dirac pulses decaying with the order of the harmonic and having contributions only at odd multiples of the chopping frequency 1/T.

(5.9)

The power spectral density of the output process y(t)=[Ax(t)]m(t) can be found from the following convolution:

 

Fig.5.4: Chopper modulation

(5.10)

This gives contributions only at the odd multiples of the chopping frequency 1/T:

(5.11)

Therefore, the output power spectral density is a repeated replica of the input power spectral density at the odd multiples of the chopper frequency rapidly decreasing with the order of the harmonic. That is why foldover effects are not present in the case of chopping. This is the main difference between chopping and sampling methods.

Rand3D

Jobs
Analyst Programmer for Palm Beach County at West Palm Beach, FL
Mapping & GIS Sales Rep for California Surveying & Drafting Supply at Sacramento, CA
Architectural Designer for Champion Home Builders at Troy, MI
Upcoming Events
ATE SOLIDWORKS Innovation Day 2017 at LIFELONG LEARNING INSTITUTE LEVEL 2 @ 11 EUNOS ROAD 8 SINGAPORE Singapore - Oct 5, 2017
Additive Manufacturing Conference 2017 at Knoxville Convention Center 701 Henley Street Knoxville TN - Oct 10 - 12, 2017
ASSESS 2017 CONGRESS at Bolger Center Potomac MD - Nov 1 - 3, 2017
FABTECH 2017 at McCormick Place Chicago IL - Nov 6 - 9, 2017
Kenesto: 30 day trial
MasterCAM



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise