CHAPTER 3

Power considerations in sub-micron digital CMOS


Prev TOC Next

3.3. Fundamental limits

Fundamental limits for analog processing can be found from fig.3.3 where an analog processor is shown [2], [3]. This analog processor can be an amplifier, a filter, an oscillator etc. On the capacitor C there is a voltage VO with a peak-peak value Vpp. From the power supply is drawn a current with a mean value of IDD. Denote DQ the charge drawn from the power supply and f the frequency of the signal. Then, the total power P is:

(3.8)

Power has a minimum when the peak-peak voltage on the capacitor Vpp has a value close to the power supply voltage. The capacitor C is charged and discharged from the

 

Fig.3.3: Analog processor

power supply from a resistive path. The thermal noise generated by the resistive path will create noise on the capacitor but the band limiting action of the RC combination gives a finite contribution of noise on the capacitor, independent on the value of the resistor. The noise power on the capacitor is kT/C where k is the Boltzmann’s constant. The S/N ratio defined as the power of the signal over the power of the noise can be found from:

(3.9)

Therefore, we can relate the power P to the S/N ratio in the following manner:

(3.10)

This absolute minimum of power predicts a ten fold increase of power for every 10 dB increase in signal to noise. In fig. 3.4 we have plotted on the same picture the power per frequency for a digital processor (see Chapter 2) and the power per frequency of an analog processor as a function of S/N ratio.

Comparisons between power consumption in analog versus digital, based on this figure will predict advantages of digital processors for large S/N ratios and advantages of analog processors for low S/N ratios respectively [2], [3]. Given the fact that energy per transitions in digital ETR decreases with the decrease of the feature size (see SIA roadmap from [11]), in future, digital processors are supposed to become more power efficient even for lower S/N ratios.

 

Fig.3.4: Fundamental power limits as a function of S/N


Featured Video
Jobs
Associate Packaging Engineer for Unilever at Englewood Cliffs, New Jersey
Senior Account Manager, Utilities for RAMTeCH Software Solutions, Inc. at Stillwater, Minnesota
GIS Engineer III for Nebraska State Government at Lincoln|, Nebraska
Vice President, GIS Business Unit for RAMTeCH Software Solutions, Inc. at Stillwater, Minnesota
GIS ANALYST for Cobb County Government at Marietta, California
Upcoming Events
MEMS & Sensors Executive Congress—MSEC 2018 at Silverado Resort and Spa 1600 Atlas Peak Road Napa CA - Oct 28 - 30, 2018
ASSESS 2018 CONGRESS at Chateau Elan Winery & Resort 100 Rue Charlemagne, Braselton GA - Oct 28 - 30, 2018
OpenFOAM Conference North America 2018 at Holiday Inn & Suites Farmington Hills - Detroit NW 33103 Hamilton Court Farmington Hills MI - Oct 30, 2018
ATX Minneapolis 2018 at Minneapolis Convention Center MN - Oct 31 - 1, 2018
Kenesto: 30 day trial
SolidCAM: See It Live



Internet Business Systems © 2018 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
AECCafe - Architectural Design and Engineering EDACafe - Electronic Design Automation GISCafe - Geographical Information Services TechJobsCafe - Technical Jobs and Resumes ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise