Open side-bar Menu
 Jeff's MCAD Blogging

Posts Tagged ‘CAM’

Virtual Prototyping and Manufacturing Simulation – Obstacles To Acceptance

Friday, January 20th, 2012

Like all aspects of the product development process, to justify its existence, simulation and test productivity are becoming an evermore pressing issue. Vendors say that in many cases, customers are demanding significant tangible proof of ROI in months, not years.

A major obstacle to wider acceptance of virtual prototyping and manufacturing simulation is a persisting lack of interoperability between CAD, CAM, and digital prototyping in the bigger PLM scenario. In this context, working toward data interoperability is not regarded as a value-added activity. Overall, however, one of the primary goals of digital test and simulation is to make the overall engineering activity sequence more of a value center and less of a cost center. Another goal is the ability to simulate the entire product lifecycle – from concept through production through sustainment to retirement.

Integrating the analytical, virtual, and physical is disruptive and is an obstacle to acceptance because the integration forces people to work differently than they had done previously. This integration only works through evolutionary implementation, and not necessarily everything all at once.

Many of the digital prototyping tools are still too difficult to use, and vendors need to pay more attention to ease of learning/use. Ease of use is important because vendors, even Tier 1 automotive suppliers, with their low margins cannot afford to hire and employ Ph.D.s to run their digital prototyping software.

On the other hand and in their defense, though, these same vendors are not interested in simplifying (“dumbing-down”) their software so much that they can solve only relatively simple problems. This is a big issue, and one that is even bigger than CAD, where ease of learning/use have made great strides for most vendors the past couple of years. Conversely, many vendors feel that the legacy workforce is not well-suited or qualified for the digital prototyping tools available today.

One way to address the ease of use issue is to provide a scaleable user interface on test/analysis applications to suit different user needs and skill levels at different times.This is tough to address because it requires flexibility and adaptability.

Finally, there is the trust factor that can be an obstacle. In the simulation/test arena, there is an adage that roughly goes, “Everyone trusts test results except test engineers, and everyone trusts analysis results except analysts.” Just about everyone agrees, however, that even with the best digital methods, physical testing will never go away.

The decision of whether to use physical versus digital prototyping is a delicate balance of tradeoffs. In fact, many companies employ virtual testing and simulation as a decision-making tool for conducting physical testing.

So how will digital prototyping ultimately succeed? It’s not hardware or software that makes or breaks digital prototyping, it’s people. While great people can overcome marginal or bad hardware and software, marginal people can cause the best hardware and software to fail. In this context, digital prototyping is no different than any other technical endeavor with regard to the absolute importance of the “people factor” for success.

Virtual Prototyping and Manufacturing Simulation – From Products To Processes

Wednesday, January 18th, 2012

Market speak aside and regardless of whether it’s called, digital or virtual prototyping for manufacturing processes basically comes down to simulating something in the physical world, whether it’s simulating the machining of a part, placement of machines on a plant floor, or optimizing workflow.

To set the record straight, digital prototyping of anything, including manufacturing processes, is not necessarily CAD or CAM, per se. In fact, it primarily involves digital simulation and test to verify and validate designs and processes, and is an intensely math-based method of viewing them. Some vendors define digital simulation and test as simply good, old-fashioned computer-aided engineering (CAE), although most don’t anymore.

Prototypes of any type, whether physical or digital, provide a basis for making predictions about behavior for making better design, manufacturing, and business decisions. Ideally, intelligent digital prototyping is not only computer based, but a synergy of simulation (virtual) and testing (physical) information based on experience.

Much like CAD/CAM, the main areas that digital prototyping for manufacturing processes aim to influence in a positive manner include:

  • Accelerating time to market
  • Reducing cost
  • Increasing safety of the designed product
  • Improving product quality, reliability, and performance.

Figures bandied about by various industry pundits and analyst organizations predict that integrated digital prototyping is resulting in cumulative savings for product design and manufacturing processes of billions of dollars, and that’s only the beginning.

One of the greatest benefits of employing math-based methods in digital prototyping is that you can actually see cause and effect and track things that can’t be physically measured. Math captures reality. Digital prototyping is changing the traditional product development cycle from designbuildtestfix to designanalyzetestbuild. This newer paradigm reduces cycle times and is much less physical facility intensive. However, for its value to be fully realized, analysis through digital prototyping should be regarded as important as design of products and processes.

That all sounds good, right? Well, like just about anything that aims to change the status quo, there are obstacles to acceptance of virtual prototyping and manufacturing simulation. Overcoming these barriers will be the topic of the next MCADCafe Blog.

PLM 2012 Part II – Can Vendors Pull It Off?

Friday, January 13th, 2012

Last time, based largely on vendors’ marketing language,  PLM was defined as a comprehensive system and process that integrates, interfaces, and interacts with every other IT system within an organization, including CAD, ERP, CRM, etc.  While this occurs at a peer level, the PLM oversees and, to a certain extent, controls all data exchanges.

I think, however, there is a better definition and model of what PLM actually should be. Unlike many vendors’ definitions,  PLM is not a peer system to other systems, such as ERP, SCM, and CRM. Rather, PLM is the intellectual property backbone of an enterprise. While the other subsystems deliver indirect cost-reducing improvements, none of them have any measurable impact on delivering top-line, revenue enhancing results and only a minor impact on lowering direct costs. The only way to positively impact top-line revenues is to develop and build innovative, higher-quality products, and PLM is the only system of the four that addresses these issues.

In this context, PLM transforms ideas to profits, capturing customer experiences, and generating ideas for new products. Along the way, the intellectual property undergoes several transformations (such as ideas to concepts, concepts-to-prototypes, prototypes-to-products, and so on) and interacts with the other systems. Ideally, a well-implemented PLM system provides a comprehensive framework that lets all the other systems and disparate groups of users to easily interact with an enterprises’ intellectual property so anyone can add value to it.

I think the revised definition and vision finally get to the heart of what a PLM was always envisioned to be, but thus far, executed and implemented by only a few PLM vendors – an intellectual property asset manager that can be used universally within an organization.

Ultimately, the success of PLM is dependent on two things. First, it is imperative that vendors communicate comprehensively and truthfully what their PLM offerings can do and integrate with, as well as what their customers can reasonably expect in terms of gains and ROI. Second, customers must educate themselves to the true needs of their organizations and how they expect PLM to fit in with the rest of their existing and future IT infrastructures. Only then will customer expectations and vendor promises meet  for improving processes and resulting products through intellectual property asset management.

Can vendors pull off what PLM was truly meant to fulfill? I think so, and more and more vendors will do so, increasingly with cloud-based services that are just beginning, but should decrease implementation costs and increase productivity through being available to anyone anywhere.

PLM 2012 Part I – Will Vendors Pull It Together to Fulfill the Prophesy?

Wednesday, January 11th, 2012

Like many of the ingredients in a manufacturing organization’s computer technology alphabet soup, such as ERP, SCM, CRM, not to mention CAD, CAM, and CAE, product lifecycle management (PLM) for years has been touted as being the “next big thing” and the the final frontier for integrating all manufacturing IT functions.  Honestly, though, can it truly provide all that the various vendors are promising? I have asked myself that question for several years now — is PLM a great hope or just another great hype?

It seems that every vendor defines PLM in a manner that best suits their respective existing product lines and business practices, and not always necessarily the processes of the customers they are trying to serve. Therein lies a big part of the PLM problem. PLM should address processes and not just products – neither the vendors’ nor their customers’ – and too few vendors to this point have stressed the processes they are claiming to improve over the products and services they are trying to sell.

It also seems like everybody (yes, now including just about every CAD vendor big and small) is at least trying to get into the PLM act, regardless of whether they should or should not based on their development and integration capabilities or the needs of their customers. Even database giant, Oracle, says it wants to be a major PLM player, although the company has eluded that it doesn’t want to dirty its hands with traditional CAD/CAM stuff — it wants to look at the bigger picture, although it doesn’t elaborate what that picture is.

Although they are quite different in requirements, approach, implementation, and task load, I continue to see PLM and PDM (product data management) regarded practically as equals in vendors’ conference presentations and promotional advertising. Using these acronyms interchangeably only adds to the confusion that already exists in the PLM marketplace. However,  it does give more vendors more opportunities to say that they “do PLM.” By definition, PDM handles only data and is a subset of PLM; whereas PLM, to many peoples’ thinking, should interface and interact with every other IT system within an organization, including ERP, CRM, etc. at a similar level as a peer system.

So,  is PLM fulfilling the prophesy that the vendors have promised? That’s the question we’ll tackle in the next MCADCafe Blog.

 

PLM – Can Vendors Pull It Together?

Like many of the recent past ingredients of a manufacturing organization’s computer technology alphabet soup, such as ERP, SCM, CRM, not to mention CAD, CAM, and CAE, product lifecycle management (PLM) is without a doubt this year’s biggest buzzword and a technology that is touted as being the “next big thing.” But in all honesty, can it truly provide all that the various vendors are promising? I keep asking myself, is PLM a great hope or just another great hype?

 

It seems that every vendor defines PLM in a manner that best suits their respective product lines and business practices, and not necessarily the processes of the customers they are trying to serve, and therein lies a big part of the PLM problem. PLM should address processes and not just products – neither the vendors’ nor their customers’ – and too few vendors to this point have stressed process over product.

 

It also seems like everybody (yes, including just about every CAD vendor big and small) is trying to get into the PLM act, regardless of whether they honestly should or should not. Even database giant, Oracle, wants to be a major player, although the company has as much said that it doesn’t want to dirty its hands with traditional CAD/CAM stuff, it wants to look after the bigger picture, although it doesn’t elaborate even vaguely what that picture is.

 

Although they are quite different in approach and task load, I’ve even seen PLM and PDM (product data management) regarded practically as equals in conference presentations and promotional advertising literature. Using these acronyms interchangeably only adds to the confusion that already exists in the marketplace, but it does give more vendors more opportunities to say that they “do PLM.” By definition, PDM handles only data and is a subset of PLM; whereas PLM, to many peoples’ thinking, should interface and interact with every other IT system within an organization, including ERP, CRM, etc. at a similar level as a peer system.

TurboCAD pro : Free Trial
MasterCAM



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise