Open side-bar Menu
 Jeff's MCAD Blogging

Posts Tagged ‘CAE’

Looking Ahead: 2015 MCADCafe Calendar of Topics

Tuesday, October 28th, 2014

It’s almost November, so with just two months left of this year, it’s not too early to start thinking about what we’ll be covering in 2015. The calendar below reflects what we perceive as some of the most important topics today, as well as feedback from our readers and other supporters.

The main theme for each month will be covered in an extended article or series of articles so that the topic can be covered in a more comprehensive way. We’ll also be covering some of the major MCAD events throughout the year, reporting what we see and hear from vendors, partners, and attendees.

If you have any thoughts of topics you would like to see covered in 2015, feel free to contact me at jeff@ibsystems.com or 719.221.1867.

We look forward to an exciting 2015 and providing you with the MCAD content you want most for improving your design, engineering, and manufacturing processes.

Keep MCADCafe.com your source for all things MCAD. It’s going to be a great year!

(more…)

MCAD Mystery: Whatever Happened To . . . ?

Wednesday, July 30th, 2014

If you’ve been around the technical/engineering software business as long as I have, as with any business, nothing stays the same. This includes founders, executives, and other major players who were once prominent in the industry, but for many reasons have moved on. Some, to other companies in the industry, some to other industries, and some who have just plain disappeared. History never stands still and the CAx industry is no exception.

Although it’s a bit dated and based on a research project, check out the video below for a very short recap on the history of CAD:

A Short History of CAD

During the coming weeks and months we’ll try and track down players who were formerly very prominent in the MCAD arena and see what they’re up to now. Some of these folks include:

  • John Walker – Autodesk
  • Mike Riddle – Autodesk
  • Carol Bartz – Autodesk
  • Dominic Gallello – Autodesk
  • Dick Harrison – PTC
  • Steve Walske – PTC
  • Jim Meadlock – Intergraph
  • Joe Costello – Think3
  • Pat Hanratty — MCS
  • Martin Newell – Ashlar
  • Jon Hirschtick – SolidWorks
  • John McEleney — SolidWorks
  • Jeff Ray – SolidWorks
  • Jason Lemon – SDRC
  • Fontaine Richardson – Applicon
  • John Wright – United Computing (later Unigraphics)
  • Thomas Curry – MSC Software
  • Robert Bean – CADKEY

Obviously, this list only scratches the surface of possibilities. If there is anyone currently or formerly renowned in the CAD/CAM/CAE/CAx industry you would like to see us track down and update what they’re up to, send an email to me at jeff@ibsystems.com with a subject line that reads, “Where Are They Now?”, and we’ll do our best to respond in an upcoming blog on a person’s whereabouts and more recent accomplishments.

(more…)

Dassault Systemes Expands Multi-Physics Simulation, Acquires SIMPACK

Tuesday, July 15th, 2014

Dassault Systemes announced this week that it has acquired simulation technology provider SIMPACK in an all cash deal. The transaction was completed on July 10, 2014. Not surprisingly, financial details of the deal were not revealed.

With the acquisition of Munich-based SIMPACK, Dassault continues to expand its multiphysics simulation technology portfolio to include multi-body mechatronic systems.

SIMPACK has more than 130 customers in the energy, transportation (primarily automotive and rail), and biomedical industries, including Alstom, Bombardier, BMW, Daimler, Honda, Jaguar Land Rover, MAN, and Vestas.

SIMPACK Multibody Simulation (MBS) – Engine Chain

(more…)

ANSYS Acquires SpaceClaim: May the Force(s) Be With Them

Thursday, May 1st, 2014

Well, another CAD company is snapped up, and the technical software consolidation train continues to roll on. That in itself is not too surprising. What is, though, is that a CAE company has acquired a CAD company.

ANSYS announced earlier today that it has acquired SpaceClaim Corp. for a purchase price of $85 million in cash, plus retention and an adjustment for working capital. The transaction closed on April 30, 2014.

ANSYS SpaceClaim Overview
From the beginning, SpaceClaim said it offered a 3D modeling tool that could be used by more than just CAD experts during the product development process (and this is a key point to the acquisition). According to SpaceClaim, this is made possible because of a process, called “direct modeling,” that differs dramatically from traditional CAD software, which is used by a relatively small percentage of engineers – typically late in the development process, to document the detailed design. While direct modeling itself is not unique, SpaceClaims implementation of it is. (more…)

Jury Awards Millions For Simulation Software Misappropriation (and Misunderstanding?)

Thursday, April 17th, 2014

Earlier this week, MSC Software Corp. announced that a jury in the United States District Court for the Eastern District of Michigan found that Altair Engineering willfully and maliciously took MSC Software trade secrets (from Adams simulation software) to use in its MotionSolve product. In other words, the ruling spells out that Altair Engineering knowingly took MSC Software trade secrets with malicious intent.

Keep in mind, though, that this award was no slam-dunk, as the suit was first filed in July 2007 as MSC Software Corp. versus Altair Engineering Inc. The six-week trial ended with two days of jury deliberation.

The jury awarded MSC Software $26.1 million for misappropriation of trade secrets and breach of confidentiality agreements by Altair and two former MSC employees who are currently executives at Altair.

Jurors found that Altair had misappropriated some source code as well as concepts or processes that are used to write the code from MSC, and that the employees had also violated one or more non-solicitation, confidentiality, or severance agreements with MSC.

According to the lawsuit, after Altair hired some former MSC Software employees, Altair began developing a software product called MotionSolve that competed directly with MSC’s Adams/Solver.

MSC had previously alleged that at least eight employees had left MSC between 2005 and 2007 and took jobs at Altair. Five of those employee claims were dismissed prior to trial.

(more…)

Software Review: SimWise 4D – Motion, Finite Element Analysis, and Optimization in One Package

Monday, January 20th, 2014

There are a number of simulation/analysis software products available for conducting motion and FEA studies. However, the ability to conduct them both, as well as optimizing assemblies is a tall order, especially for mere mortals and non-CAE specialists. With a relatively short learning curve, for this evaluation SimWise 4D proved its mettle for handling motion, FEA, and optimization in one comprehensive package.

What is known today as SimWise 4D began when Design Simulation Technologies (DST) acquired a license from MSC Software Corp. to the MSC.visualNastran 4D (vn4D) product. That software traces its roots to the Working Model 3D product developed by Knowledge Revolution, which was acquired by MSC in 1999, extended to include FEA capabilities, and renamed Working Model 4D.


(more…)

A Tale of Two Upcoming Conferences: CIC & NAFEMS

Wednesday, January 15th, 2014

Although still a few months away, there are a couple of important conferences that will be co-located this year — Collaboration & Interoperability Congress (CIC) and NAFEMS Americas Congress.

NAFEMS and Longview Advisors just announced plans to co-locate the NAFEMS 2014 Americas Conference and the Collaboration & Interoperability Congress (CIC) in Colorado Springs, CO, running May 28-30, 2014..

The central theme of the co-located events is, “Driving Product Development with Collaboration, Simulation, and Integration.” (more…)

Simulating Mechatronics with LabVIEW

Thursday, March 15th, 2012

National Instruments (NI) is an interesting company that develops NI LabVIEW software as its flagship product. The company is fortunate to sell its products to a diverse customer base of more than 30,000 different companies worldwide, with no one customer representing more than 3 percent of revenue and no one industry representing more than 15 percent of revenue. Customer base diversity is an especially good thing in the technical software market.

I have followed NI for a number of years and really got interested in the company a few years ago with LabVIEW 8.5 being used alongside SolidWorks. LabVIEW has followed a natural progression in the evolution of the NI product line for designing and prototyping complex systems, including robots, that are becoming increasingly pervasive in the world around us, and not just manufacturing environments anymore.

National Instruments supports the increasing need for simultaneous simulation of mechanical and electrical systems, also known as mechatronics. As I have been saying for several years, there was a time when mechanical systems and products were strictly mechanical, however, the majority of today’s products continue to become more capable, and more complex, involving the integration of mechanical, electrical, and software subsystems.

A more comprehensive way to view mechatronics is the systematic integration of mechanical, electrical, electronics, and embedded firmware (software) components. When all of the various components are combined the result is an electromechanical system. Maybe a better term is functional ecosystem. In this context, mechatronics is characterized by software and electronics controlling electromechanical systems. This description is widely seen in automotive engines and other automotive systems, as well as production machinery and medical equipment.

A continuing trend is that as mechatronics systems get more complex and as functionality demands increase, in many instances software and firmware are replacing or at least supplementing hardware. A benefit of this transition from hardware to the burgeoning emphasis on software is called “postponement,” that is, the ability to include or change major functionality features during the final stages of production via embedded software. (more…)

Introducing CAE Into Your CAD/CAM Workflow: Look Before You Leap

Friday, January 27th, 2012

There are several types of CAE-related manufacturing applications for optimizing the use of materials, tools, shape and time, and machine layout by simulating and analyzing specific manufacturing processes. However, probably the most common method for getting CAE into a manufacturing environment, finite element analysis (FEA) for parts and tooling.

FEA is a numerical technique for calculating the strength and behavior of structures. It can be used to calculate deflection, stress, vibration, buckling, and other behaviors. Typical applications for FEA would include minimizing weight and/or maximizing the strength of a part or assembly.

In FEA, structures are divided into small, simple units, called elements. While the behavior of individual elements can be described with a relatively simple set of equations, a large set of simultaneous equations are required to describe the behavior of a complex structure. When the equations are solved, the computer and FEA tool displays the physical behavior of the structure based on the individual elements.

FEA tools can be used for innovating or optimizing mechanical designs. Optimization is a process for improving a design that results in the best physical properties for minimum cost. However, optimization using FEA tools can prove difficult, because each design variation takes time to evaluate, making iterative optimization time consuming. On the other hand, FEA tools can really shine when seeking new and unique ways of designing things – the most crucial aspect of innovation.

Before committing to any CAE tool, however, be sure it is compatible with your existing CAD and CAM tools, the types of parts and assemblies you design, and your general workflow.

Keep in mind that there is no one tool that serves everyone’s needs. Some will be interested fluid flow, others in structural mechanical properties, and still others in thermal issues. Get input from as many groups within your organization as are likely to benefit from CAE tools. When evaluating CAE tools, make sure you evaluate them with your models; not just models supplied by a vendor. That way, you’ll be able to objectively evaluate different CAE tools that best suit your needs in your environment, and not be overly swayed by what a vendor wants you to see. Obviously, it’s in your best interest for objectivity to use the same parts or assemblies with different CAE tool vendors.

Finally, a word of caution. Don’t expect CAE tools to solve all your problems with all of your parts. Like CAD and CAM tools, they should be used in conjunction with experience and common sense to arrive at optimized and innovative designs. Calculating return on investment when using CAE tools can be as complicated as performing analyses on complex assemblies. However, you can probably count on estimating ROI from time saved during the design process, lower material costs, reduced numbers of physical prototypes and ECOs, and possibly greatly reducing the number of product liability lawsuits. CAE tools cannot perform miracles by themselves because they still require a significant human element, but employed wisely, will likely improve your workflow and provide tangible benefits.

Introducing CAE Into Your CAD/CAM Workflow: Getting Onboard

Wednesday, January 25th, 2012

By now you’ve almost certainly got MCAD and CAM tools as a vital component of your business. With them you’ve hopefully seen how they have positively impacted the way you work, as well as the way you interact with your customers and vendors. Looking for a way to further increase your productivity, while continuing to optimize your processes?

If you haven’t already, it’s time you considered integrating tools into your workflow for simulation and analysis of virtually any aspect of the product development lifecycle. Although known in some circles as computer-aided engineering (CAE) tools, that acronym has largely been replaced by simulation and analysis, although they all mean roughly the same thing.

It wasn’t all that long ago that CAE was relegated to the latter stages of the design and manufacturing (product development) process — too many times as an afterthought. This is changing, though, on two fronts. First, realizing the potential payback in terms of reduced production time and getting it right the first time, many design and manufacturing organizations have moved CAE tools further forward in the development process. Some are even using them in the earliest stages of design, the conceptual phase. Second, software vendors are getting better at integrating CAE with their CAD and CAM tools.

A major roadblock to CAE’s wider acceptance has been the perception that only high-priced analysis specialists (math PhDs?) could understand and work with CAE tools. While specialists are required for some of the high-end tools for performing complex analyses, there are many CAE tools now on the market that require just some basic training and practice to become proficient in a relatively time.

Admittedly, all CAE tools require a technical mindset, but you don’t necessarily have to have a doctorate in math anymore to run many types of analysis and simulation. It really just requires familiarity with the interface of a CAE tool for creating and loading digital models, and then reviewing and interpreting the results. A really nice thing is that many CAE tools now work from within the familiar UI of your CAD or CAM tool. Finally, computer prices that continue to drop have helped popularize CAE tools, because some of them require a lot computing horsepower when working with large assemblies or very precise engineering constraints.

If this all sounds easy, it is to a point, but there are some caveats. That’s what we’ll discuss next time, as well as the most commonly used CAE tool — FEA.

Kenesto: 30 day trial
SolidCAM: MC SolidCARE Upgrades
MasterCAM



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise