Open side-bar Menu
 Jeff's MCAD Blogging
Jeff Rowe
Jeff Rowe
Jeffrey Rowe has more than 40 years of experience in all aspects of industrial design, mechanical engineering, and manufacturing. On the publishing side, he has written well over 1,000 articles for CAD, CAM, CAE, and other technical publications, as well as consulting in many capacities in the … More »

Re-Use Your CAD: The ModelCHECK Handbook

 
December 8th, 2016 by Jeff Rowe

I read a lot of books, mostly non-fiction and technical in both hardcopy and digital formats. Although I get through most of them, there are some I don’t even try to finish, and a few become favorites that I keep for future reading and reference. I recently read a book entitled Re-Use Your CAD: The ModelCHECK Handbook by Rosemary Astheimer. When I saw Handbook in the title, I thought it would be another dry reference book, but I was pleasantly surprised that it was much more than that — it’s a good learning and reference resource.

The book’s author, Rosemary L. Astheimer, is an application engineer for Action Engineering, as well as a Continuing Lecturer for the Polytechnic Institute at Purdue University. She received her BS in Mechanical Engineering from the University of Massachusetts in Amherst and her Masters of Software Engineering from Brandeis University. Before joining the faculty in 2014, Ms. Astheimer spent over 15 years working in the CAD software industry. She began her career in software support, transitioned into a pre-sales application engineer focusing on business development of new products and was most recently a product manager.

I first met and interviewed Ms. Astheimer at PTC’s LiveWorx 2016 in Boston. She knows her stuff.

ModelCHECK Cover Only

What Is ModelCHECK?

Read the rest of Re-Use Your CAD: The ModelCHECK Handbook

Siemens Goes ECAD With Mentor Graphics Acquisition

 
December 1st, 2016 by Jeff Rowe

By acquiring one of ECAD’s giants, Mentor Graphics, Siemens continues to round out its design capabilities far beyond its MCAD roots as part of its Vision 2020 quest. Siemens says the acquisition is an extension of “shaping the Digital Industrial Enterprise by expanding its portfolio for industrial software.”

Under terms of the agreement, Siemens will acquire Mentor for $37.25 per share in cash, which represents a value of $4.5 billion. The offer price represents a 21% premium to Mentor’s closing price on November 11, 2016, the last trading day prior to the announcement.

Siemens Logo

Major Mentor shareholder Elliott Management has committed to support the transaction. In many ways, I don’t think Mentor had much of a chance of fending off the acquisition, as its profits were minuscule (and had been for some time), and got strong-armed by Elliott who owns a good chunk (~8%) of Mentor. By the way, Elliott blessed the offer.

Elliott Management, run by billionaire Paul Singer, said when it raised its stake it saw numerous opportunities to boost Mentor’s “deeply undervalued” shares and had started talks with the company’s management and board. According to the company, the acquisition is a “great outcome” for Mentor shareholders as the company will benefit from Siemens’s increased scale and greater resources.

Mentor Graphics Logo

The acquisition extends Siemens’ Digital Enterprise Software portfolio with Mentor’s electronics IC and systems design, simulation, and manufacturing software – capabilities essential for smart connected products, such as autonomous vehicles.
Read the rest of Siemens Goes ECAD With Mentor Graphics Acquisition

Looking Ahead: 2017 MCADCafe Editorial Lineup

 
November 24th, 2016 by Jeff Rowe

It’s almost the end of November, so with just over a month left of this year, it’s not too early to start thinking about what we’ll be covering in 2017. The calendar below reflects what we perceive as some of the most important topics today, as well as feedback from our readers and other supporters.

The main theme for each month will be covered in an extended article or series of articles so that the topic can be covered in a more comprehensive way. We’ll also be covering some of the major MCAD events throughout the year, reporting what we see and hear from vendors, partners, and attendees.

We’ll also be covering some of the major MCAD events throughout the year, reporting what we see and hear from vendors, partners, and attendees. All of the events we attend will include daily written coverage and Tweets throughout event days, as well as video and audio interviews.

If you have any thoughts of topics you would like to see covered in 2015, feel free to contact me at jeff@ibsystems.com or 719.221.1867.

We look forward to an exciting 2017and providing you with the MCAD content you want most for improving your design, engineering, and manufacturing processes.

Keep MCADCafe.com your source for all things MCAD because 2017 is going to be a great year!

2017 MCADCafe Editorial Calendar of Monthly Topics

January 2017 – CAM Trends

February 2017 — Cloud Computing with MCAD Applications

Show Coverage — SolidWorks World 2017

Read the rest of Looking Ahead: 2017 MCADCafe Editorial Lineup

Are We Finally Witnessing the Future of Making Things?

 
November 17th, 2016 by Jeff Rowe

Along with almost 10,000 other attendees, I was in Las Vegas this week at Autodesk University and am still trying to comprehend if I’ve just seen the future of manufacturing.

To a large extent, Autodesk’s vision for the future of making things stems from what it calls generative design.

So what is generative design? According to Autodesk’s official definition, generative design mimics nature’s evolutionary approach to design.

AU 2016 2

AU 2016: The Future Of Making Things

In the digital realm, designers and engineers input design goals into generative design software, along with parameters, such as manufacturing methods, materials, and cost constraints. Using cloud computing, the software quickly explores all possible permutations of a solution, generating design alternatives. The software then tests and learns from each iteration what works, what doesn’t, and what works best.

In other words, with generative design, there is not necessarily a single solution to a problem, instead, there are potentially thousands of solutions that address the initial problem.

Read the rest of Are We Finally Witnessing the Future of Making Things?

MBD Finally Gaining Momentum for Smart Manufacturing

 
November 10th, 2016 by Jeff Rowe

A couple of weeks ago, I attended a very interesting event called the 3D Collaboration & Interoperability Congress 2016 (3D CIC) that was hosted by our colleagues at Action Engineering. The actual conference event was two days, but was preceded by a SOLIDWORKS user group meeting that focused exclusively on model-based definition (MBD) for an entire day. Myself, along with about 60 other attendees got a good look at MBD, not just SOLIDWORKS’ perspective, but a broader view, as well.

I was fortunate to sit next to Oboe Wu, product manager at SOLIDWORKS who is a huge proponent of MBD. With SOLIDWORKS MBD, you can communicate product and PMI directly in 3D, bypassing time-consuming 2D processes, in other words, drawings.

SOLIDWORKS MBD sets data such as product models, dimensions, geometric tolerances, surface finishes, welding symbols, bills of material (BOM), callouts, tables, notes, Meta properties, and other annotations within the SOLIDWORKS 3D environment in 3D PMI. Because all the information needed to guide the operation is integrated with the 3D models, traditional 2D drawings are no longer needed (at least in theory).

With MBD, 2D drawings become less necessary and meaningful. Instead of having a 3D model and a 2D drawing in a traditional workflow, the model is the drawing in an MBD workflow. The MBD approach provides a direct connection and single digital data thread from design to engineering to inspection.

SOLIDWORKS MBD 2017

Read the rest of MBD Finally Gaining Momentum for Smart Manufacturing

One Year In, HP Inc. Continues To Reinvent Itself

 
November 3rd, 2016 by Jeff Rowe

If there ever was a company that has struggled to reinvent and find itself, as well as its former stature in consumer and commercial technology, it’s HP.

There was a time when HP had no equal in several product segments, such as test & measurement, calculators, pocket PCs/personal assistants, etc., but those days are long gone. Sure, the company reigns in printers, and their desktop and mobile workstations are good, but not nearly as compelling as in the good old days.

HP’s reign as the world’s largest manufacturer of personal computers came to an end in the second quarter of 2013. At the time sales figures showed that Chinese PC manufacturer Lenovo shipped more computers during that period than HP, which had held the crown as the largest PC maker since at least 2006.

In an attempt to return to its former glory days, HP split into two public companies with one side focusing on its cloud and enterprise market (Hewlett-Packard Enterprise), and the other on personal systems (computers) and printers (HP Inc.). To make this happen, the company also cut thousands of jobs in the process.


Read the rest of One Year In, HP Inc. Continues To Reinvent Itself

Wakeup Call For One Of IoT’s Biggest Nightmares – Denial of Service

 
October 27th, 2016 by Jeff Rowe

Well, it was only a matter of time before what happened last Friday happened. I’m talking about the Distributed Denial of Service (DDoS) incident on server farms of a key internet firm, Dyn, that repeatedly disrupted access to major websites and online services including Twitter, Netflix,GitHub, and PayPal across the U.S. and Europe last Friday. The White House called the disruption malicious and hacker groups have claimed responsibility, though their assertion is not yet verified.

The event involved multiple denial-of-service (DoS) attacks targeting systems operated by Domain Name System (DNS) provider, Dyn, that rendered major internet platforms and services unavailable to large swaths of North America and Europe.

“The complexity of the attacks is what is making it so difficult for us,” said Kyle York, Dyn’s chief strategy officer. “What they are actually doing is moving around the world with each attack.”

As a DNS provider, Dyn provides to end-users the service of mapping an Internet domain name—when, for instance, entered into a web browser—to its corresponding IP address. The DDoS attack involved tens of millions of DNS lookup requests from a large number of IP addresses. The activities are believed to involve a botnet coordinated through a large number of IoT devices that had been infected with the Mirai malware.


Read the rest of Wakeup Call For One Of IoT’s Biggest Nightmares – Denial of Service

Apple Adding To Computer Product Line Minus Ports

 
October 20th, 2016 by Jeff Rowe

According to an article this week in Engadget, Apple reportedly plans to eliminate the USB 3.0 and Magsafe ports on its next-gen MacBook, and kill the 11-inch MacBook Air altogether. That’s according to Macotakara, the Japanese rumor site that was among the first to predict that the company would kill the traditional headphone jack on the iPhone 7. It also claims that Apple will unveil a 15.4- and 13.3-inch MacBook Pro at a new product launch event next week.

If the report is accurate, MacBook Pros will only have USB Type C and Thunderbolt 3 ports. As with the new MacBook, you’d presumably charge it through the USB-C port and connect peripherals via Thunderbolt 3. That means you’d need some kind of USB 3.0 adapter, since the majority of storage and other peripherals still use the traditional standard. For the MacBook, Apple sells a $79 USB-C dock that gives you USB 3.0, USB-C for power and an HDMI connection.

Mac USB Ports

Are These Ports Gone In The New MacBook Pros?

The company will also release a new 13.3-inch MacBook Air, but discontinue the 11-inch model, according to the report. That squares with previous rumors that Apple would kill the smaller Air model, since it has been made effectively redundant by the 12-inch MacBook. However, it also shows that it isn’t discontinuing the MacBook Air completely, as some feared (including me).

Read the rest of Apple Adding To Computer Product Line Minus Ports

Dassault Systemes Helps Drive Driverless Vehicle Development With 3DEXPERIENCE

 
October 13th, 2016 by Jeff Rowe

When it comes to product manufacturing, consumers have zero tolerance for errors, and even less when it comes to vehicles. As we enter into a new generation of vehicle R&D with connected and autonomous cars, these expectations will only increase. What will this mean for automotive manufacturers and how will it change the traditional design and development processes?

Enter 3D modeling, simulation, and virtual reality (VR), things that Dassault Systemes knows something about.

Two announcements made recently by Groupe Renault and PSA Group demonstrate how Dassault Systèmes’ 3DEXPERIENCE platform is helping car companies to use several 3D technologies to design, create, and visualize innovative transportation products, including autonomous vehicles, to meet the demand of their customers with what it calls its Target Zero Defect platform.

Dassault Systemes’ Target Zero Defect Collaborative Platform

The transportation and mobility industries are continually impacted by broad social and economic trends. Concern for the environment is currently the top influencer. The push for improved fuel efficiency has received unprecedented attention, with government agencies worldwide imposing increasingly strict regulations. Environmental friendliness has also become a purchasing concern of consumers, who also demand the same web connectivity and entertainment options they experience at home and on their mobile devices. And then there’s connected/autonomous/driverless vehicles.

Dassault Systèmes is responding to these business and technical challenges with its Transportation and Mobility Industry Solution Experiences. The “Target Zero Defect” Experience builds upon the 3DEXPERIENCE platform with a series of industry-tailored process modules that empower users with the tools needed to address many industry concerns. For customers in the transportation and mobility industry these modules can help initiate the product development process flow using company-established knowledge and best practices that ensure and sustain competitive advantage. Through the full cycle of development from conceptual engineering to component design, manufacturing, and final assembly, the Dassault Systèmes industry process modules are designed to allow users to target zero defects in product delivery.

DE_3D_EXperience

Target Zero Defect Modules Span the Automotive Product Lifecycle

Read the rest of Dassault Systemes Helps Drive Driverless Vehicle Development With 3DEXPERIENCE

HP Adding A New Dimension To Printing

 
October 10th, 2016 by Jeff Rowe

For as long as I can remember, HP has produced an incredible range of products for science, engineering, and consumer customers. More recently the company has had a huge presence in computers and 2D printers.

Now, HP has vision for 3D printing for manufacturing parts on a relatively economical machine it calls the Multi Jet Fusion (MJF) 3D printer. The company claims these parts will have similar quality and characteristics as injection-molded parts, and will print at speeds that HP claims to be 10x compared to similar competing technologies. More about these claims to follow.

However, I have to wonder if HP will be able to fulfill its promise.

The HP Multi Jet Fusion Printer

HP wants to deliver SLS-quality parts on a system targeted at the professional 3D printer market. So-called professional 3D printers can be run in office environments and use photopolymers as material and inkjet printheads for material deposition. HP’s Multi Jet Fusion uses a printhead to jet a resin onto a powderbed where it will be fused.

In a Multi Jet Fusion technology white paper HP states, “Compared to SLS, HP Multi-Jet Fusion technology helps reduce the overall focused energy requirements needed to attain full fusing, resulting in more consistent material properties.” So SLS has higher “focused overall energy requirements,” yet the strong thermal bonds this energy creates is exactly what make SLS so desirable. So, exactly what is this process and can it really create material properties that match SLS and even injection-molded parts?

Tim Heller, Director 3D Printing, Hewlett-Packard At IMTS 2016

Historically, parts made from 3D printers, such as the MJF have lacked the robust mechanical properties of injection-molded parts. SLS is the only viable additive manufacturing technology capable of matching injection-molded parts in tensile strength and long-term stability. Materials undergoing the fusion process have issues that point to a natural limitation, not a technological oversight that HP or any other manufacturer can truly fix.

Read the rest of HP Adding A New Dimension To Printing

SolidCAM: Cutting Webinar
MasterCAM



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise