Open side-bar Menu
 Jeff's MCAD Blogging

Archive for the ‘Uncategorized’ Category

Tata Technologies Uses Dassault’s 3DEXPERIENCE Platform for Electric Vehicle Feasibility Study

Friday, June 15th, 2012

I guess it’s just me, but I’m still trying to get used to Dassault calling itself the 3DEXPERIENCE Company with a 3DEXPERIENCE Platform that consists of all of of its product lines. To its credit, though, Dassault recently announced a tangible result with Tata Technologies’  use of its 3DEXPERIENCE platform, based on V6 technology, for developing the small urban electric vehicle study – the eMO (for electric MObility).

Dassault’s 3DEXPERIENCE Platform

The eMO study was undertaken to demonstrate the feasibility of developing an electric vehicle at an affordable price. Tata Technologies says that the 3DEXPERIENCE Platform enabled its team to complete the project quickly and accurately.

“We needed a highly regarded partner for this project, as we were relying on it to showcase our multi-dimensional approach to vehicle engineering and development,” said Kevin Fisher, president, Tata Technologies Vehicle Programs and Development (VPD) Group. “We have a deep history with Dassault Systèmes and were confident that CATIA and ENOVIA V6 applications would help us leverage the talents of a global engineering team to meet numerous design and cost constraints, as well as create the targeted user experience, including a final vehicle price tag of under $20,000.”

A significant challenge in the development process was the requirement to fit all the required vehicle systems into a small footprint while maintaining spacious seating for four adults. To achieve this, Tata Technologies used CATIA and ENOVIA to develop various studies, allowing global collaboration to rapidly evaluate and optimize possible solutions.

The development of the eMO was a global effort, requiring collaboration among more than 300 Tata Technologies engineers from the U.S., Europe, and India. The data generated by the 3DEXPERIENCE Platform became the common language for collaboration and allowed rapid comparison of proposals, leading to swift decisions and innovative solutions. In addition, it allowed more time for testing of different design features aimed at reducing energy consumption, such as vehicle weight, rolling resistance and aerodynamics.

Not a lot of details were given, which is sort of understandable for a feasibility study, but is tangible proof that Dassault’s 3DEXPERIENCE Platform is being used for real work. It will be interesting to see how eMO evolves and where it goes.

MCADCafe e-Magazine: PTC’s CEO Jim Heppelmann Declares New Era of Manufacturing Competitiveness at PlanetPTC Live 2012

Thursday, June 14th, 2012

At its annual worldwide gathering of customers, PlanetPTC Live in Orlando, Florida, PTC declared a new era of manufacturing competitiveness driven by technology solutions that help companies achieve product and service advantage. In his keynote address, PTC president and CEO Jim Heppelmann argued that the world is poised to enter what The Economist magazine recently labeled a “third industrial revolution.” In this new era, a concerted focus on strategy will lead a renaissance in global manufacturing which will, in turn, put companies using PTC technology solutions in increasingly important roles helping create new value for their companies, and helping them achieve a competitive edge in the 21st Century.

“Over the past few decades, global manufacturers have made massive investments in technology and process change aimed at improving operational efficiency,” said Heppelmann. “Today, however, we are reaching the limits of the competitive edge these investments can deliver. Manufacturers need to be operationally efficient to stay in the game, but they can no longer achieve meaningful advantage from that alone. The time has come for a new source of competitive advantage – product and service advantage – from technology and process change that improves strategy decision-making across the enterprise, from engineering to the supply chain to sales and service networks.”

Fundamentally, PTC technology solutions transform the way companies create and service products by enabling them to make better, smarter, faster strategy and planning decisions. These decisions relate to how products are designed and engineered, how a supply chain is optimized, how quality and compliance is assured throughout the manufacturing process and, ultimately, how service is efficiently delivered against a product once sold. Individually, these planning decisions help deliver a strategy that supports a brand. Collectively, they are the new source of competitive advantage.

Over its 25 year history, PTC has developed a deep expertise in helping companies optimize the processes associated with each stage of the product lifecycle. In recent years, through a combination of organic development and acquisition, PTC has built a broad portfolio of technology solutions that it combines with its process expertise to assist customers in achieving greatness. In 2012, PTC has gone one step further and reorganized the company itself to align directly with the organizational structure of the modern manufacturing enterprise. Specifically, PTC has established five internal leadership teams focused on driving its technology solution strategies in the areas of product lifecycle management (PLM), computer-aided design (CAD), application lifecycle management (ALM), supply chain management (SCM), and service lifecycle management (SLM).

“A new era is upon us,” concluded Heppelmann. “To win in the new century requires a new way of thinking. For manufacturers, it’s about making fundamentally smarter strategy decisions. Today, advantage goes to those who differentiate their product and service offering, and PTC is proud to align itself with leading global brands that are poised to win in the new competitive era by achieving product and service advantage.”


Commentary By Jeffrey Rowe, Editor

Along with about 2,000 other attendees, we just returned from PlanetPTC Live 2012.

It was a good conference with a different “vibe” than in past years – more confident, forthcoming, and upbeat. I don’t know if it was the recent management changes that made the difference, but it was evident that the era of the “new PTC” has begun.


SpaceX Cuts Composite Development Time With Siemens’ Fibersim

Friday, June 1st, 2012

The privately funded and developed SpaceX Dragon just returned from a flight that was successful from start to finish. The SpaceX Dragon capsule parachuted into the Pacific on May 31, 2012 to conclude the first private delivery to the International Space Station and ring in a new era for NASA’s approach to space exploration.

SpaceX’s CEO/CTO, Elon Musk, said “Welcome home, baby,” and was said to be a bit surprised with the SpaceX Dragon’s triumphant mission.

After its initial success, the primary goal for SpaceX will be to repeat the success on future flights.

Because the unmanned supply ship’s arrival was so accurate, when it splashed down, a fleet of recovery ships was able to quickly move in to pull the capsule aboard a barge for towing to Los Angeles.

It was the first time since the shuttles stopped flying last summer that NASA got a sizable load returned from the space station – more than half a ton of experiments and equipment.

The arrival of the world’s first commercial cargo carrier concluded a nine-day test flight that was virtually flawless, beginning with the May 22, 2012 launch aboard the SpaceX company’s Falcon 9 rocket from Cape Canaveral, continuing with the space station docking three days later, and departure six hours before landing in the ocean.

SpaceX attributes a large part of its design and engineering success to CAD, CAM, and CAE software, including Fibersim from Siemens PLM Software for composite material design and engineering.

According to Chris Thompson, Vice President of Structures Engineering at SpaceX, “Time is always of the essence for us, so Fibersim’s proven ability to take us from art to part so rapidly was a critical consideration in our decision to purchase the software. Fibersim improves product quality by providing accurate engineering information to the manufacturing floor, which also helps the repeatability of the manufacturing process.” The repeatability of the manufacturing process is vital for repeated success of the space platform.


Adopting Advanced Composite Materials

For more than 50 years, commercial access to space has been limited by the high cost of flight operations. However, Space Exploration Technologies Corp. (SpaceX) has rewritten the rules of the game by adopting a new business model and cutting edge technologies to enhance reliability and reduce the cost of space access.

One significant way SpaceX enhanced the performance of its Falcon rocket and Dragon capsule was by adopting composite materials. Composites have received growing acceptance in a variety of industries, including aerospace, and the space industry has taken note. SpaceX was no exception. The design team recognized that composites could significantly enhance performance by improving the strength-to-weight ratio of the materials used to construct its spacecraft.

Once that decision was made, SpaceX conducted an evaluation of available composites engineering solutions and concluded that Siemens PLM Software’s Fibersim software was the best fit for its design and manufacturing environment.

“Based on our comparison, there was no question that Fibersim was definitely the best choice on the market for designing and manufacturing composite components to suit our needs,” said Kirk Matthes, SpaceX’s design manager.

SpaceX’s business model is derived from the philosophy that simplicity, so low-cost and reliability can go hand in hand. By eliminating the traditional layers of management and subcontractors, the company reduced costs while speeding decision making and delivery. Likewise, by keeping the vast majority of manufacturing in-house, SpaceX reduced costs, kept tighter control of quality, and ensured a tight feedback loop between the design and manufacturing teams. By concentrating on simple, proven designs with a primary focus on reliability, the company has reduced the costs associated with complex systems operating at the margin. Fibersim has proven very valuable within that design/engineering paradigm.

SpaceX used Fibersim to design and manufacture a variety of composite parts on both the Falcon rocket and the Dragon capsule. Fibersim was used to develop production fiber placement diagrams and laser projection files. It was also used to assist with actual fiber placement for the spacecraft’s thermal protection system, including the heat shield, exterior panels, insulating layers on the rocket and spacecraft, and several panels around the nose cone and engines.

Fibersim is now being employed from the outset on all new composites projects and has enabled SpaceX to reduce the design-to-manufacturing time on composite parts, such as the 5-meter fairing boattail panel by 71 percent, from seven days to two days. For other designs, the generation of manufacturing data was reduced by as much as 86 percent, from seven days to one day, using Fibersim. These time savings mean that changes are processed more quickly, designs are updated more reliably, and the overall process flows more smoothly.

SpaceX has used Fibersim to perform a variety of tasks, including creating designs, making flat patterns, working in conjunction with its finite element analysis (FEA) software, and creating laser data.


Strong Support From Siemens

As a newcomer to composites, SpaceX was also concerned about finding a software vendor that had significant composites experience so it could receive the necessary guidance and support as it embarked on working with new materials.

“Siemens PLM Software’s support is excellent,” said Matthes. “Anytime we have a problem, we can send a model to the Siemens PLM Software’s technical consultant and he helps us get through the issue. Again, as a fast-paced organization, we must continually be moving forward, and Siemens PLM Software’s responsiveness and expertise enables us to do just that.”

Siemens PLM Software also embeds the know-how derived from its years of experience in the composites industry to provide intuitive, easy-to-use features for the design of a variety of composite structures. This is integrated into the software, speeds learning time, and makes the learning experience for new users more effective. This also aids in training new users who may not have experience in designing with composite materials.

Since most of the composite parts are not especially complicated, the Fibersim Composites Engineering Environment (CEE) has proven to be sufficient. However, certain sections of the launch vehicle are characterized by complex curvature, so SpaceX opted for Siemens PLM Software’s Advanced Composites Engineering Environment (ACEE) to design those parts. ACEE exploits the inherent advantages of many different composite design methodologies –including structure-based, zone-based, and ply-based design — to enable efficient engineering of large, complex structural components and highly contoured composite skins.

Most importantly, it helps to address the changes that inevitably occur while developing a composite structure. Based upon inputs from analysis, manufacturing or further iterations of the design, the definition evolves to its final state. This can require frequent updates and changes, which are time-consuming without software created specifically for this process. ACEE is designed to meet this challenge and create a more straightforward process for managing design changes.

“ACEE provided a significant boost to our efforts to define or import laminate specifications and requirements quickly using a zone-based design methodology,” explained Matthes. “It helped speed ply definition by dynamically generating zone transitions and ply boundaries using an offset profile.”

The ability to accelerate the process and make it more accurate enables SpaceX to proceed with high speed and quality, as well set new standards for designing and manufacturing composite spacecraft both now and in the future.

As a kid who grew up during NASA’s heyday in the 60s and 70s and the more recent hiatus, I’m now very encouraged about the future of space exploration – due in large part to private enterprise — and I applaud the efforts of SpaceX. I hope SpaceX’s accomplishment ushers in a new wave of engineers, scientists, and entrepreneurial companies who will take advantage of this great opportunity.


Collaboration & Interoperability Congress 2012: Where’s JT?

Monday, May 21st, 2012

This week we are attending the Collaboration & Interoperability Congress (CIC) 2012. CIC is a unique independent vendor/technology/product-neutral event that addresses collaboration and interoperability in manufacturing and business processes. The event seems particularly well attended this year and represents by a wide range of industries and standards bodies.

One notable absence, however, was any representation from the JT camp — Siemens PLM Software. I would have thought that JT would take advantage of an event such as CIC to showcase and grandstand the data format. With no real presence, what are we to think? Is JT really as ubiquitous and pervasive as we have been led to believe? Maybe yes, maybe no. Admittedly, JT has its own conference this coming fall, but when just about every other interoperability technology provider shows up, why not JT? On the other hand, an organization that had a major presence was the relatively new 3DPDF Consortium.

CIC is an interesting conference because collaboration and interoperability are undergoing huge changes, due in large part to clould-based computing, storage, and software as service. Will the cloud be used exclusively tomorrow? Probably not, but over time it will be increasingly used as a primary digital data creation and management platform. In any case, interoperability in the cloud will become a bigger and bigger issue with great challenges, but also great opportunities.

An interesting session on the first day of the Congress discussed the following lightweight 3D formats:

  • STEP
  • 3DXML
  • 3D PDF
  • JT

Free viewers are largely what differentiate the above formats, but it was made clear that there is no such thing as a free viewer due to implementation and IP protection/security costs.

The 3D PDF format really got a lot of attention, at least during the first day of the Congress. It seems the reasons for this are the industrial strength tools available for 3D PDF, excellent user acceptance, and the fact that PDF is a widely recognized ISO standard (ISO 32000).

In the coming weeks, we’ll detail the advantages and disadvantages of each of the lightweight formats because they definitely have each.

As its central theme, CIC drives home the point that like living creatures and technologies, when it comes to evolution, it’s not necessarily the strongest or brightest that survive, it’s those who are the most adaptable. I think this will prove true and apply to collaboration and interoperability going forward.

MCADCafe e-Magazine: ASCON Releases Geometric Kernel As CAD Component

Monday, May 21st, 2012

ASCON Group, developer and integrator of professional MCAD and PLM solutions, announced that it is making public its proprietary geometry kernel C3D as the foundation for creating computer-aided design systems and applications. The kernel is also well suited for designing computer-aided engineering (CAE) software, computer-aided manufacturing (CAM) programs for CNC machines, and modeling of engineering processes for product lifecycle management (PLM).

Development of the geometric kernel began in 1995, and then in 2000 ASCON released KOMPAS-3D v5.9, the first computer-aided design software system based on its C3D. Since then, the company has updated the kernel, and is now launching it as a separate product for the CAD component market. It handles all aspects of a CAD system: 2D drawing and sketching, 3D hybrid and solid modeling, parametric constraints, and translation.

“The decision to open access to our technology was the next logical step in our on-going development of the geometric kernel,” said Maxim Bogdanov, CEO of ASCON. “We are confident in the quality of C3D. For more than a decade, it has been the basis of our own line of successful CAD/CAM software.

“We see great prospects for its use, as new players appear on the market needing components for their CAD systems,” he added. “Standard 2D systems will inevitably switch to 3D, and consequently require a fundamental change to the core of the systems — or else find a replacement. The CAD component market is changing, and so there is a place for a Russian company with 17 years experience in geometric kernel development, and whose mathematical quality is recognized throughout the world.”

The main feature of ASCON kernel is that it is complete. The core of C3D combines everything necessary for the development of application solutions, as follows:

C3D Modeler is the geometric modeler with functions for 3D solid and hybrid modeling, sketching, and 2D drawing

C3D Solver is the parametric constraints solver with functions for creating and solving parametric constraints on 2D and 3D geometry

C3D Converter is the translator module that reads and writes geometric models in all primary exchange formats

Potential users for the C3D kernel are developers of CAD, CAM, and CAE systems and related applications requiring the processing of 3D models and 2D graphics. Among them are large industrial companies who often create software for internal use. Third-party developers can use the ASCON kernel to extend functions and abilities, increase performance and reliability, quickly create 3D modelers based on existing 2D systems, and reduce cost of development of their products.

Even before C3D was released officially, an early tester was already putting it to real-world use. “We were among the first to work with ASCON’s geometric modeling kernel,” explained Andrew Lovygin, CEO of LO CNITI and the official distributor of Esprit CAM in Russia. “In just four months, we embedded a full 3D solid modeler in our CAM system. Our choice of C3D was driven by ASCON’s flexible pricing policy and quality technical support. I am confident that ASCON will achieve excellent results with its kernel on the international market.”

C3D was first announced in April at the Congress On the Future of Engineering Software (COFES). C3D kernel is available now for limited licensing based on individual requests. Full access will be opened in January, 2013.


Commentary By Jeffrey Rowe, Editor

When you think of geometric modeling kernels, does anything immediately come to mind? For most of us who have been long enough, the ones probably at the forefront are ACIS and CGM (owned by Spatial Corp., a part of Dassault Systemes) and Parasolid (owned by Siemens PLM Software). Now, though, ASCON has entered the arena.

There was a time when geometric modeling kernels were the keystones of the MCAD industry. Most CAD vendors then relied, at least to some degree, and licensed them as engines for making their software applications go. While newly developed and released kernels were a good thing, some CAD developers felt that they were held hostage by the release cycles of their geometric kernel developers.


Wohlers Report 2012 Report: An Excellent Source for Additive Manufacturing and 3D Printing Information

Tuesday, May 15th, 2012

Wohlers Associates just published Wohlers Report 2012, an in-depth analysis of additive manufacturing (AM) and 3D printing worldwide. This new edition marks the 17th consecutive year of its publication. I can attest that the Report is the most thorough and comprehensive document of its kind.

Wohlers Report 2012 covers all aspects of additive manufacturing, including its history, applications, processes, manufacturers, and materials. It documents pertinent developments in the past year, covers R&D and collaboration activities in government, academia, and industry, and summarizes the state of the industry in countries around the world. It also tracks the extraordinary growth of personal 3D printers—machines priced under $5,000, with the majority in the $1,000 to $2,000 range.

The information is used to track industry growth, provide views and perspective, uncover trends, and offer insight into the future of additive manufacturing. “The 2012 edition is the most ambitious effort in the report’s history,” said Terry Wohlers, president of Wohlers Associates and a principal author of the new report. Major new parts on applications, materials and processes, and front- and back-end considerations were added. The final part of the report concludes withtrends that are expected to shape the future of the technology and industry.

Additive manufacturing is the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. Additive manufacturing is used to build physical models, prototypes, patterns, tooling components, and production parts in plastic, metal, and composite materials. AM systems use thin, horizontal cross sections from computer-aided design (CAD) models, 3D-scanning systems, medical scanners, and video games to produce parts that can be difficult or impossible to produce any other way.

The report sells for $495 worldwide and is available in PDF form. The report’s table of contents, as well as additional information on the market and industry, are available at

I’ve known Terry Wohlers for many years and consider Wohlers Report THE source of timely and comprehensive information for additive manufacturing. I don’t recommend many books, but highly recommend this one for anyone who wants to get accurate in-depth information on AM.

MCADCafe e-Magazine: Dassault Systèmes Acquiring Gemcom

Tuesday, May 8th, 2012

Dassault Systèmes announced its intent to acquire geological modeling and simulation company Gemcom Software International (Gemcom) for approximately US$360 million. Privately-held Gemcom is the world leader in mining industry software solutions, headquartered in Vancouver.

“With the acquisition of Gemcom, coupled with our 3D Experience platform capabilities, our objective is to model and simulate our planet, improving predictability, efficiency, safety and sustainability within the Natural Resources industry and beyond,” said Bernard Charlès, President and CEO, Dassault Systèmes. “To support this ambitious goal, we have created a new brand, GEOVIA. Raw material provisioning and long term resource availability is a major concern for society. Today’s announcement is a significant step towards fulfilling our purpose of providing 3D experiences for imagining sustainable innovations to harmonize products, nature and life.”


NC Software Sales Making a Strong Comeback

Thursday, May 3rd, 2012

I recently read some encouraging news from CIMdata contained in its soon-to-be-published Version 21 of the CIMdata NC Market Analysis Report. They estimate, that based on end-user payments, the worldwide NC software and related services market grew by 14.4% in 2011. The estimated end-user payments grew from $1.333 billion in 2010 to $1.525 billion in 2011. The market growth rate in 2011 reflects strong overall PLM spending, continuing the recovery from the downturn in the global economy that manifested itself in dramatically higher machine tool sales into the manufacturing industry. Estimates are that worldwide shipments of machine tools increased by 35% from 2010 to 2011, which is directly related to the volume of CAM software employed to drive these tools. CIMdata projects that in 2012 growth in manufacturing will continue and end-user payments for NC software will increase by 12.4% to $1.714 billion.

Since 2002, the NC software market has shown modest but steady growth as global economies generally improved. There has been worldwide growth in the sale of machine tools and manufacturing output; greater emphasis has been placed on the efficient operation of machine tools as manufacturing firms have strengthened their competitive positions, and the overall PLM market, of which CAM software is a component, has continued on a strong growth path during this period. CAM software purchases are related to all of these factors—particularly machine tool sales.

Alan Christman, CIMdata’s Chairman and author of the NC Market Analysis Report said, “2011 was an excellent year for manufacturers and most providers of NC software. Most firms saw good growth in 2011, and CIMdata expects this growth to continue in 2012 and beyond. The continued strength and growing importance of global manufacturing powers like China and other emerging economies should result in increased investment in advanced technologies like CAD, CAM, and other segments of the overall PLM market. We have seen moves documented in the popular press to bring manufacturing back to the US, which will require still more investment in advanced manufacturing technologies to be competitive with economies with lower labor costs. The next few years should continue to be strong for NC and the broader PLM market.”

This is good news for not only the NC software market, because since 2009, when all engineering/technical software sales sucked, most manufacturing software sectors are today experiencing and enjoying a resurgence in sales. So, is engineering software for manufacturing really emerging from the depths of despair of just a couple of years ago? I’d have to say, yes. Not only are sales stronger, but a number of software vendors have socked enough cash away to make a number of notable acquisitions, making them stronger. Sales aren’t like the “old days” yet, but indicators are definitely moving in a positive direction.

Trimble Acquiring SketchUp

Thursday, May 3rd, 2012

Trimble, a company  historically focused on applications requiring position or location, including surveying, asset management, and mapping is acquiring SketchUp from Google, a widely used drawing package for creating simple 3D models. It’s so popular, in fact, that Google says SketchUp had 30,000,000 activations in the last year alone. While SketchUp is targeted more toward architectural design and model buildings for Google Earth, I’ve used it for years as the name implies – for sketching. Mostly for diagrams and concepts, but sketches, nonetheless.

However, there is the SketchUp 3D Warehouse that contains a lot of user-created collections of 3D objects, such as office furniture, people, and buildings.

Google acquired SketchUp from @Last Software in 2006. At the time, SketchUp users feared the worst, but Google did a good job continually improving it and supporting the 3D Warehouse.

Can the same be said for Trimble with regard to a continuing commitment? That, of course, remains to be seen, but see it become a bigger part of Trimble’s positioning technologies, especially for construction and mapping purposes.

For my part, I use SketchUp in a limited way for MCAD-related purposes that it wasn’t really intended for and will probably continue to do so.

MCADCafe e-Magazine: PTC Releases Creo 2.0

Monday, April 23rd, 2012

PTC announced Creo 2.0, the latest release of its revolutionary new generation of product design software. Last June, PTC challenged the industry paradigm with the introduction of the first nine “apps” in its Creo family – conceived, in part, to enable a much wider range of roles to contribute to the design process with a set of integrated, purpose-built tools. With Creo 2.0, PTC introduces a new role-specific app supporting modular product design that extends how organizations can approach concept design, and delivers significant productivity enhancements to its existing Creo apps.

“The release of Creo 2.0 demonstrates PTC’s unwavering commitment to deliver against our Creo strategy and solve the chronic challenges customers face with traditional CAD tools,” said Michael Campbell, divisional general manager MCAD segment, PTC. “Built on PTC’s heritage of innovation, Creo rethinks the very nature of product design, increasing collaboration and protecting data fidelity across any user role, any design mode, or any data source. Today, PTC is also delivering the first technology component in its vision for managing modular product designs driven by the bill of materials.”

Modular Product Design

With Creo 2.0, PTC introduces a 10th app to the Creo family – Creo Options Modeler™ – a new role-specific app built for designers who need to create or validate modular product designs in 3D early in a design cycle. The new app, available this summer, delivers a dedicated, easy-to-use, powerful set of capabilities to build accurate, up-to-date, precise 3D-based product assemblies, irrespective of size or complexity. When used with Creo Parametric™, Creo Options Modeler enables teams to validate precise mass, center of gravity, and even check and resolve critical issues like interference for modular designs.

Creo Options Modeler contributes to PTC’s AnyBOM™ Assembly technology vision, which promises to give teams the power and scalability needed to create, validate and reuse information for modular product architectures. By combining Creo Options Modeler with PTC’s Windchill product lifecycle management software, manufacturers can generate and validate precise 3D representations of product configurations defined by an individual bill of materials.

By enabling easier reuse of existing 3D models and through innovative interface tagging, the new app can reduce process errors and engineering rework. As a member of the Creo product family, Creo Options Modeler also seamlessly leverages and shares data between other Creo apps, and with other people involved in the design process and beyond, further increasing detailed design and downstream process productivity.

Rethinking Concept Design

Many companies prefer to start concept designs in 2D to quickly explore multiple options before moving to build more complex 3D models. With Creo 2.0, PTC delivers on its vision for enabling companies to make the most of this early stage of their product development process. The new releases of Creo Parametric, Creo Direct™, the free Creo Sketch™ (now available on Mac OS X with this release), and Creo Layout™ combine to greatly enhance collaboration, innovation and design exploration during concept design. Since all Creo apps share a common data model, 2D geometry and design data can be easily shared by all users and apps and can be re-used later in the design process to accelerate the transition to the detailed design phase.

In Creo Layout 2.0, PTC is helping to solve the specific problem of transitioning from 2D to 3D, allowing users to easily create a layout of complex assemblies, quickly explore design alternatives, import a variety of 2D CAD file types, sketch and modify 2D geometry, organize information with groups, tags and structure as well as dimensions, notes and tables. Once created, a 2D design in Creo Layout can serve as the basis for 3D models, allowing users to create assemblies in 2D or reference 2D geometry to create part features, and any changes made in 2D are reflected in 3D upon regeneration.

Productivity Enhancements

In the new release, PTC delivers more than 490 enhancements to the Creo app family, all designed to optimize the user experience and increase design productivity.

Creo Parametric enables increased productivity and streamlining of the overall product design process with:

  • Freeform Surfaces – With the enhanced freestyle capabilities, designers can quickly and easily create more refined surfaces with higher levels of detail while still maintaining top level control over the general freeform shape. This significantly reduces the time to move concepts to precise, highly-detailed aesthetic product designs.
  • Cross-sections – Designers working in 3D cross-sections gain complete product insight with new, intuitive, and fast ways to create and dynamically re-position the sections, including instant access directly from the model tree. Real-time interference detection within a section together with 2D visualization helps designers fully visualize the design, design changes, and detect and address potential issues early. The new tools significantly enhance productivity when working in cross-sections and provide a rich design environment that accelerates the overall design process.
  • Measure – The new streamlined measure tool offers significant performance and usability improvements. Designers can quickly gain detailed insight into key dimensions and measurements of any selected surface. By controlling how and where measured results are displayed on-screen, and allowing for simple re-use of the displayed values into other applications, such as a Word document, designers can improve the efficiency and accuracy of leveraging precise measurements during the design process.
  • Track Changes – The new track changes capability in Creo Parametric allows designers to view, accept or reject model changes made by others using Creo Direct. Designers can now work with a broader range of roles across the company while still maintaining full control of how changes are reflected in the parametric model. This ensures design intent is fully maintained. Irrespective of modeling approach or Creo app, teams can now truly work together.

Overall, Creo Parametric delivers state-of-the-art user experience, new capabilities, automates common tasks, improves performance with streamlined workflows and enables dramatically improved overall design productivity.

Beyond Creo Parametric, PTC delivers significant enhancements to other Creo apps. New capabilities in Creo Direct help accelerate bid-proposals and early concept design. Casual users can now quickly and easily create new compelling 3D designs. They also can easily modify models by reference to existing geometry of available parts and assemblies or quickly, but precisely place multiple parts and assemblies into position with the new intelligent snapping capabilities.

And as Creo Direct seamlessly works with Creo Parametric and other Creo apps, any 3D design can be shared by users across the enterprise design process.

In addition, this latest release greatly simplifies the installation process for Creo, only downloading and installing the Creo apps specific to a customer’s environment and license entitlement. This speeds download and significantly simplifies installation and configuration enabling teams to get up and running with Creo more quickly than ever before.

More information will be shared at PTC’s upcoming annual user event, PlanetPTC Live.

Creo Options Modeler is available for purchase today as an extension of Creo Parametric. It is expected to be available as a stand-alone app in June 2012. All other Creo 2.0 apps are available now. Active maintenance customers can download the release from the software downloads page on


Commentary By Jeffrey Rowe, Editor

What seemed a mysterious and curious MCAD technology announcement almost two years ago called Project Lightning has become a reality known as Creo. Now in its second major release, from the beginning, PTC heralded it as a “revolutionary” technology set that would influence CAD for decades. Has that happened? Well, that still remains to be seen.


TurboCAD pro : Free Trial

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise