Open side-bar Menu
 Jeff's MCAD Blogging
Jeff Rowe
Jeff Rowe
Jeffrey Rowe has more than 40 years of experience in all aspects of industrial design, mechanical engineering, and manufacturing. On the publishing side, he has written well over 1,000 articles for CAD, CAM, CAE, and other technical publications, as well as consulting in many capacities in the … More »

Quality Information Framework: The Digital Thread For Interoperability

 
September 21st, 2017 by Jeff Rowe

Interoperability, collaboration, inspection, quality, standards, proprietary data, neutrality, competition, and innovation. Over the years there have been myriad attempts to bring these processes together, all while protecting IP. However, as we know, while the attempts to make this happen have often been valiant, too often they have fallen well short, or worse, failed altogether.

That legacy of failure is on its way to being a thing of the past with the advent of the Quality Information Framework (QIF), an ANSI standard that supports digital thread concepts in engineering applications ranging from product design through manufacturing. Based on the XML standard, it contains a Library of XML Schema ensuring both data integrity and data interoperability in Model Based Enterprise (MBE) implementations.

QIF supports design, metrology, manufacturing, and is critical to the Industrial Revolution 4.0. Because it is XML based, QIF can be relatively easily integrated with Internet applications, and unlike other existing standards, there is no real barrier standing in the way for industry adopting QIF. It also effectively supports newer technologies, including additive manufacturing and the Internet of Things (IoT).

With QIF, all discrete manufacturers now have a standard platform that ensures quality while minimizing costs and making processes more transparent.

All information models for transporting quality data are derived from common model libraries so that common information modeling components can be reused throughout the entire quality measurement process. As a consequence, the entire process is inherently interoperable.

The video below demonstrates QIF, a feature-based ontology of manufacturing quality metadata, built on XML technology, and semantically linked to the CAD model. A group of leading CAD and metrology software providers teamed up to demonstrate a digital metrology workflow for IMTS 2016.

The starting point for this workflow is a CAD model with PMI, in either PTC Creo or SOLIDWORKS. Then, the following steps are followed:

  • A QIF model is generated
  • Balloon numbers are added and measurement resources are assigned to PMI
  • Caliper measurements are performed
  • A CMM workflow is carried out

The result is a QIF MBD model, QIF Plan data, and a set of QIF Results data. This data can now be cross-referenced, analyzed, and visualized by a variety of software packages.

QIF Interoperability Demonstration

The diagram below shows the six QIF application area information models, Model-Based Design (MBD) which is equivalent to QIF Product, Plans, Resources, Rules, Results, and Statistics. The “QIF Execution” model is, in the current version of QIF, a placeholder for future standardization. The order of generation of QIF data generally proceeds clockwise around the diagram, beginning with QIF MBD and ending with QIF Statistics. Users of the QIF information model are not required to implement the entire model for it to succeed. In other words, any of the six application models can be used individually for exchanging quality data between software systems.

Read the rest of Quality Information Framework: The Digital Thread For Interoperability

First Look At SOLIDWORKS 2018

 
September 14th, 2017 by Jeff Rowe

Well, another Labor Day has come and gone, and summer is almost over, but that means that a new version of SOLIDWORKS is about to launch. It actually and officially launched earlier this week.

I spoke with Kishore Boyalakuntla, SOLIDWORKS Vice President, Portfolio Management and Brand UX Leader about what was new in SOLIDWORKS 2018, and there was a lot to cover. Keep in mind, though, that I’ll just be touching on what I consider to be the highlights in SOLIDWORKS 2018 this time around. In the coming weeks and months I’ll be going into much more detail on the new version’s features and capabilities

Design To Smart Manufacturing

This time around, SOLIDWORKS says its design-to-manufacturing process provides the tools needed to implement a comprehensive design-through-manufacturing strategy, all inside the SOLIDWORKS environment. These tools let you work without having to export and import data from one system to another. With IP embedded in the 3D design model, and at the center of the model-based definition (MBD) process,, and thanks to associativity, changes from design or manufacturing are automatically reflected in all related CAD models, CAM programs, drawings, and documentation.

Additionally, all the information for manufacturing, inspection, and simulation and verification is directly linked to the design, so it always reflects the current design iteration (which is always a good thing).

Quickie Tour of What’s New

SOLIDWORKS CAM – This is the biggest new capability in SOLIDWORKS 2018 powered by technology from a long-time SOLDIWORKS partner, CAMWorks.

Knowledge-based machining is at the heart of SOLIDWORKS CAM, an easy-to-use 2.5-axis milling and turning solution which allows users to program in either part or assembly environments.

Rules-based machining with knowledge capture allows for the automation of manufacturing programming for executing CAM programming and tasks.

While SOLIDWORKS CAM can be used like any other CAM software—setting up operations, picking tools, setting speeds and feeds—the real advantage is found running SOLIDWORKS CAM in the automated mode (also called “rules-based” machining). Proven machining strategies, or rules, embedded into the software allow for faster toolpath creation. These rules are included out of the box, and can be easily modified while the CAM user is programming by simply changing the parameters and clicking Save.

In essence, rules-based machining is like having a built-in manufacturing consultant helping to make decisions for the team. It allows novice CAM users to get up to speed quickly by automating the tedious and repetitive tasks associated with most mainstream CAM software. It also aides experienced users by allowing them to program much faster.

Knowledge-Based Machining (or KBM) is a relatively new concept, but one that is rapidly gaining significance in manufacturing circles. While a single, concise definition has yet to be decided on, it generally refers to a CAM software’s ability to make essential knowledge a part of its automation. The system’s knowledge is then translated directly into “smart” features which help streamline and strengthen the design process, potentially eliminating or severely reducing the need to manage and document changes.

Model-Based Enterprise (MBE) – SOLIDWORKS has literally expanded model-based definition (MBD) to a new level with MBE for speeding up design detailing while streamlining and automating downstream manufacturing tasks, such as CNC programming and inspection, by importing 3D models along with PMI from all major CAD formats, as well as STEP 242.

Inspection for MBD – With the enhancements in SOLIDWORKS 2018, you can now create inspection documentation directly from 3D models with Production Manufacturing Information (PMI), as well as from 2D drawings, PDFs, and TIFFs. SOLIDWORKS Inspection is now integrated with SOLIDWORKS PDM, and supports SOLIDWORKS part and assembly files (*.sldprt, *.sldasm), as well as non-native 3D CAD formats.

3D Interconnect – You can work with more file formats including ACIS, STEP, and IGES, and automatically update your design whenever new files are received. In addition, 3D Interconnect now supports internal file information like custom properties, materials properties and reference axes.

Working With Mesh Data – You can now work directly with mesh data as you would with surface or solid geometry. Combine, intersect, split, move/copy, cut with surface, and check for interference. In addition, you can quickly fit surface bodies to regions of mesh models.

Sheet Metal – SOLIDWORKS 2018 includes tab and slot features for self-fixturing of parts for welding. A normal cut feature ensures that clearances are included for manufacturing, and tools to easily create or flatten corners that include three bends.

Generative Design – SOLIDWORKS Simulation Topology Study tool can automatically optimize the shape of a design based on weight, function, and manufacturing criteria. You can improve performance or reduce product weight based on simulation and manufacturing constraints.

Read the rest of First Look At SOLIDWORKS 2018

ANSYS Discovery Live Accelerates Engineering Simulation For Concept Exploration

 
September 7th, 2017 by Jeff Rowe

Even though we’ve been told by a number of software vendors for several years now to use engineering simulation and analysis at the earliest stages of product development, relatively few companies have heeded the advice and actually done so. In many cases, it’s still design, break, repeat in a cycle that gets very expensive quickly trying to achieve optimized design goals. Even with all the insistence and chiding from the simulation folks, I’d estimate the percentage of design work that includes simulation early in the process as somewhere between 20-25%, although that may be a bit on the high side.

This week, ANSYS presented a technology preview of what it hopes will break and change that cycle with what it calls ANSYS Discovery Live .

With it, engineers can rapidly explore design options and receive accurate simulation results with technology using engineering simulation to make digital exploration available to all engineers so they can design better products faster and more economically.

That’s a pretty confident and heady statement, knowing that several other vendors have attempted the roughly same thing with widely varying degrees of success. However, ANSYS has an interesting and innovative approach for reaching its goal — exploiting GPUs because they can handle massively parallel operations.

ANSYS readily admits that while Discovery Live is a means of bringing simulation to the engineering masses earlier in the development process, it doesn’t pretend to do everything for everybody, and there will always be a place for engineering simulation specialists for deeper dives. Discovery Live is targeted to early design exploration and to users new to simulation. Because it is not a solution for every simulation problem, Discovery Live does not compete with other more advanced ANSYS products, such as AIM, but data from it can be exported for more further study.

Read the rest of ANSYS Discovery Live Accelerates Engineering Simulation For Concept Exploration

The Ongoing Software Patent Debate

 
August 31st, 2017 by Jeff Rowe

A couple years ago I got into a pretty heated discussion with a staffer from an engineering software company about whether software patents were still relevant (or is they ever were to begin with).

While proponents (usually with deep pockets) have touted their benefits, software patents have also been used in the software industry to suppress innovation, kill competition, generate undeserved royalties, and make patent attorneys rich. So I’ll ask again, are software patents still relevant?

It’s no secret that the engineering software business is extremely competitive, as it always has been. Without naming names, the engineering software business has also proven to be a very fertile and lucrative ground for lawsuits regarding patent infringement, reverse engineering, and outright copying and pasting blocks of code.

Could stronger patent protection have prevented this from happening? Maybe yes, but probably, no.

Below is a video on the futility of software patents featuring Linus Torvalds, the creator, and for a long time, principal developer of the Linux kernel, which became the kernel for operating systems such as the Linux operating system, Android, and Chrome OS.

Linus Torvalds: Why Software Patents Make No Sense

Software patents have been hotly debated for years. Opponents to them have gained more visibility with less resources through the years than pro-patent supporters. Through these debates, arguments for and critiques against software patents have been focused mostly on the economic consequences of software patents, but there is a lot more to it than just money.

Read the rest of The Ongoing Software Patent Debate

Is A Universal File Format Possible For 3D Printing? Part 3: 3MF

 
August 24th, 2017 by Jeff Rowe

Although the future of 3D printing continues to look bright, what is still needed is a new file format for 3D print data. Being very mindful of that fact, Autodesk, HP, Siemens, Stratasys, 3D Systems, and some others have come together to form the 3MF Consortium that espouses to get behind a truly ubiquitous file format for 3D printing. It’s really an industry partnership working toward the goal of finding a better, universally applicable 3D printing file format known as the 3D Manufacturing Format (3MF)—a file format originally developed by Microsoft, also a member of the Consortium.

The consortium admits that there is a problem that the 3D manufacturing must resolve –  the current file formats used for 3D printing are in serious need of an upgrade. I totally agree.

Typically, data is passed from computer to 3D printer in STL (stereolithography) or OBJ (object) files, common 3D printing file formats. The 3MF Consortium, which now includes the research wing of General Electric, say STL and OBJ are outdated and clunky file formats with interoperability issues when used by some of the newer 3D printers, as well as contribute to 3D printing failures.

3MF Consortium Introduction

Thus, one of the driving forces behind 3MF, an XML-based open format, this new file type could contain information on the texture of a 3D print, the color of the print, and other complex characteristics. If that sounds familiar, that’s because it is—the Additive Manufacturing File Format (AMF), which has been around since 2011, solves many of the issues STL files have, and 3MF and AMF are in many respects pretty similar file formats, but let’s take a closer look.

Read the rest of Is A Universal File Format Possible For 3D Printing? Part 3: 3MF

Is A Universal File Format Possible For 3D Printing? Part 2: AMF

 
August 17th, 2017 by Jeff Rowe

Like it or not, since the mid-1980s, the STL file format has been the de facto industry standard for transferring information between CAD programs and additive manufacturing equipment. However, the STL format only contains information about a surface mesh, and cannot represent color, texture, material, substructure, and other properties of a fabricated object.

As additive manufacturing technology has evolved from producing primarily single-material, homogenous shapes to producing multi-material geometries in full color with functionally graded materials and microstructures, there has been a growing need for a standard interchange file format that could support these features. A second factor that prompted the development of a new standard was the improving resolution of additive manufacturing machines. As the fidelity of printing processes approached micron scale resolution, the number of triangles required to describe smooth curved surfaces resulted in unacceptably large file sizes.

The Additive Manufacturing File Format (AMF) was introduced as an alternative to the STL file format to address many of the shortcomings of the popular file format. STL files introduce errors such as leaks and inconsistences, and also does not support color, material The choice, or orientation. STL files also rely on triangle subdivision to account for curvature. As the STL file scales in size, retaining resolution means introducing significantly more triangles. For example, a 10cm sphere at 10 micrometer resolution requires 20,000 triangles. Scaling up the 10cm sphere at the same resolution would significantly increase the amount of triangles, resulting in a much larger file.  AMF seeks to address these issues by redesigning the way a 3D object is digitally stored.

Read the rest of Is A Universal File Format Possible For 3D Printing? Part 2: AMF

Is A Universal File Format Possible For 3D Printing? Part 1: STL

 
August 10th, 2017 by Jeff Rowe

Since the dawn of 3D printing, a little over three decades ago, there has been one file format that has dominated communicating with 3D printers — STL. Love it or hate it, and even with its limitations and shortcomings, STL has remained the de facto standard for the 3D printing industry. That may finally be changing, though, with the advent of more contemporary and robust file formats for 3D printing, such as AMF and 3MF. Over the next couple weeks we’ll be discussing the evolution, advantages, and disadvantages of 3D printing file formats, starting this week with STL.

So What Exactly Is An STL File?

Essentially, an STL file stores information about 3D models, but this format describes only the surface geometry of a 3D object without any representation of color, texture, or other common model attributes.

As it has been for three plus decades, the STL file format is still by far the most commonly used file format for communicating with 3D printers.

The true meaning of the file extension .STL has always been somewhat of a mystery. I’ve always considered it be an abbreviation of the word STereoLithography, although sometimes I have also heard it referred to as Standard Triangle Language or Standard Tessellation Language. Which is correct? Probably all of them.

Introduction To The STL File Format

The main purpose of the STL file format is to encode the surface geometry of a 3D object using tessellation. Tessellation is the process of tiling a surface with one or more geometric shapes with no overlaps or gaps. Having no gaps is especially important, as an object must be watertight to be printed. A good real life example of tessellation is a tiled floor.

Read the rest of Is A Universal File Format Possible For 3D Printing? Part 1: STL

HP Introduces Wearable Commercial VR System – The HP Z VR Backpack

 
August 3rd, 2017 by Jeff Rowe

This week at SIGGRAPH, HP today announced a unified approach and commercial solutions for virtual reality (VR), positioning itself as a provider for businesses looking to reduce concept to production cycle times, improve training procedures, and deliver fully immersive customer experiences using VR. As part of this strategy, the company unveiled what it claims is the world’s first professional-grade wearable VR PC – the new HP Z VR Backpack. Designed to realize a fuller potential of VR, it is, as the company claims, a secure and manageable wearable VR PC.

“Virtual reality is changing the way people learn, communicate and create,” said Xavier Garcia, vice president and general manager, Z Workstations, HP Inc. “Making the most of this technology requires a collaborative relationship between customers and partners. As a leader in technology, HP is uniting powerful commercial VR solutions, including new products like the HP Z VR Backpack, with customer needs to empower VR experiences our customers can use today to reinvent the future.”

HP Z VR Backpack Docked

Well beyond gaming, the opportunities for commercial VR are virtually (sorry for the pun) limitless for businesses in product design, architecture, healthcare, first responder training, automotive, and entertainment. Technologies like VR can provide unique experiences, ranging from reinventing the buying experience in automotive showrooms to changing the way fire departments train their staff.

HP Z VR Backpack

Read the rest of HP Introduces Wearable Commercial VR System – The HP Z VR Backpack

SME and Stratasys Announce Winners of the 2017 SkillsUSA Additive Manufacturing Competition

 
July 27th, 2017 by Jeff Rowe

The Society of Manufacturing Engineers (SME), a nonprofit organization that supports the manufacturing industry, and Stratasys Ltd. announced the winners of a student additive manufacturing competition held during the 53rd annual SkillsUSA National Leadership and Skills Conference.

The SkillsUSA Additive Manufacturing Competition is a student contest co-sponsored by the organizations to attract the future workforce to this growing field and allow contestants to get hands-on experience using the latest 3D printing software and technology, such as the new Stratasys F123 Series. The competition was held at the 53rd annual SkillsUSA National Leadership and Skills Conference, and six teams took home gold, silver and bronze medals for fulfilling all of the contest requirements.

Now in its third year, the 2017 Additive Manufacturing Competition consisted of 34 high school and post-secondary student teams competing for a chance to take home gold, silver, or bronze medals – as well as scholarships from the SME Education Foundation, and a MakerBot Mini printer. The Additive Manufacturing Competition was created to stimulate student learning of additive manufacturing and 3D printing techniques.

“Each year, we attract more students to participate in the SkillsUSA Additive Manufacturing Competition and we couldn’t be more thrilled with the growth,” said Jeff Krause, executive director and CEO of SME. “This is an exciting time for additive manufacturing and 3D printing and we are proud to be at the forefront of its evolution and making sure our future manufacturing leaders will be prepared for what lies ahead as the industry progresses.”

The 2017 Additive Manufacturing Competition involved designing and printing a track piece (fixture) capable of moving a marble to a designated location after the ball rolls down a ramp. The fixture was required to connect with the ramp at specific points and remain stable for the test’s duration. Each team was provided time to design the fixture, build the 3D printed prototype on a Stratasys 3D printer, and make any necessary design modifications the next day. Read the rest of SME and Stratasys Announce Winners of the 2017 SkillsUSA Additive Manufacturing Competition

Desktop Metal Shows AM Mettle

 
July 20th, 2017 by Jeff Rowe

These are the dog days of summer, the hottest part of the season in the Northern Hemisphere. It’s also one of the slowest times of the year for noteworthy “hot” news; MCAD included, politics excluded.

However, this week marked a very noteworthy bit of news: Desktop Metal announced it has completed a $115 million Series D investment round to further accelerate the company’s rapid business growth and adoption of its end-to-end metal 3D printing systems. Since its inception in October 2015, Desktop Metal has raised a total of $212 million in financing, with the Series D marking the largest individual private round for a metal additive manufacturing company.

Desktop Metal Studio System

The Series D round included significant new investment from New Enterprise Associates (NEA), GV (formerly Google Ventures), GE Ventures, Future Fund and Techtronic Industries (TTI), a leader in quality consumer, professional and industrial products, including Milwaukee Tool, AEG, Ryobi, Hoover, Oreck, VAX and Dirt Devil. Additional investors included Lowe’s, Lux Capital, Vertex Ventures, Moonrise Venture Partners, DCVC Opportunity, Tyche, Kleiner Perkins Caufield & Byers, Shenzhen Capital Group (SCGC), and Saudi Aramco.

With the Studio System, engineers can print complex, functional parts in a variety of materials, including copper. With its high electrical and thermal conductivity, copper is an ideal material for heat exchanger applications, like this copper heat sink for an LED light bulb. (Photo: Desktop Metal)

According to Ric Fulop, CEO and co-founder of Desktop Metal, the funding will help fuel the company’s speed to market, expand its sales programs, as well as progress the development of advanced R&D. The company is also exploring international expansion as early as 2018.

Read the rest of Desktop Metal Shows AM Mettle

MasterCAM



Internet Business Systems © 2017 Internet Business Systems, Inc.
25 North 14th Steet, Suite 710, San Jose, CA 95112
+1 (408) 882-6554 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy PolicyAdvertise