Open side-bar Menu
 Jeff's MCAD Blogging

Archive for April, 2014

Autodesk Keeps CAM Door Open and Re-Certifies GibbsCAM

Wednesday, April 23rd, 2014

Over the course of the past year, Autodesk has gotten heavily involved with the CAM side of product development.

As a case in point, relatively recently, Autodesk has made it clear that it intends to become a major force in CAM to round out its Digital Prototyping philosophy that also includes design and simulation. As examples to this CAM commitment, in the past year or so it has acquired HSMWorks (a relatively small step in CAM), and more recently announced its intention to acquire Delcam (a relatively giant leap in CAM).

It was really big news when, Autodesk announced its intention to acquire Delcam, one of the world’s leading suppliers of advanced software for manufacturing. The companies offer complementary ranges of software, with Autodesk’s programs for design (CAD) and engineering (CAE) able to be combined with Delcam’s strengths in manufacturing (CAM).

On completion of the acquisition, Delcam will become a subsidiary of Autodesk. It will maintain its focus on continued growth of its market share in the manufacturing sector, counting on added strength that will come from becoming part of a larger organization.

Both Delcam and Autodesk invest heavily in product development, and this will likely continue after the acquisition, as there is likely to be little overlap and duplication of effort.

Delcam is a publicly traded company and will be purchased with cash that Autodesk has stashed outside the U.S., keeping it there most likely for advantageous tax purposes and for opportunities for transactions like this one.

GibbsCAM and Autodesk Inventor Interoperability

Cimatron Limited, a developer of integrated CAD/CAM software for toolmaking and manufacturing, announced this week that its GibbsCAM software has been certified for Autodesk Inventor 2015 under the Autodesk Certified Apps Program. This marks the fourteenth consecutive year that GibbsCAM has been certified under the program.

GibbsCAM directly opens Autodesk Inventor part models, allowing CNC programmers and machinists to program machine tools from the models, extending cost reduction and efficiency through the programming and machining processes. GibbsCAM provides integration with Autodesk Inventor, by directly reading Autodesk Inventor IPT (part model) files, preserving all color information, features and attributes assigned within Inventor to provide continuity in recognizing and communicating part and feature attributes. Alternatively, with the GibbsCAM Autodesk Inventor Add-in, Inventor users can transfer files directly into GibbsCAM with the “Transfer to GibbsCAM” menu option of Inventor software running on the same workstation. Once machining processes are defined in GibbsCAM, they are automatically updated when the Inventor model is revised.

“We are gratified for our continuing partnership with Autodesk and for Autodesk’s recognition of GibbsCAM interoperability with Autodesk Inventor,” said Robb Weinstein, Senior Vice President of Sales and Strategic Planning of Gibbs and Associates, a Cimatron subsidiary. “Our commitment to joint customers around the world remains unchanged, despite changing marketplace dynamics, as we continue to optimize the CNC-programming power and flexibility GibbsCAM provides Autodesk users.”

“We are very pleased to have Gibbs and Associates affirm their continuing dedication to interoperability with Autodesk Inventor through Inventor certification for GibbsCAM,” said Carl White, Senior  Director, Manufacturing Engineering, Autodesk. “Having companies like Gibbs and Associates as partners is highly beneficial to our manufacturing customers.”

In 2008, Gibbs and Associates merged with Cimatron Ltd., and is now operating as a wholly owned subsidiary.

The GibbsCAM product line supports 2- through 5-axis milling, turning, mill/turning, multi-task simultaneous machining and wire-EDM.  GibbsCAM also provides fully integrated manufacturing modeling capabilities that include 2D, 2.5D, 3D wireframe, surface, and solid modeling. GibbsCAM is either offered or endorsed by a number of leading worldwide control and machine tool manufacturers, including GE Fanuc, Infimatic, Siemens, Doosan Infracore, DMG MORI, Haas, Index, MAG, Mazak, Mitsubishi, Okuma, and Tornos.


Jury Awards Millions For Simulation Software Misappropriation (and Misunderstanding?)

Thursday, April 17th, 2014

Earlier this week, MSC Software Corp. announced that a jury in the United States District Court for the Eastern District of Michigan found that Altair Engineering willfully and maliciously took MSC Software trade secrets (from Adams simulation software) to use in its MotionSolve product. In other words, the ruling spells out that Altair Engineering knowingly took MSC Software trade secrets with malicious intent.

Keep in mind, though, that this award was no slam-dunk, as the suit was first filed in July 2007 as MSC Software Corp. versus Altair Engineering Inc. The six-week trial ended with two days of jury deliberation.

The jury awarded MSC Software $26.1 million for misappropriation of trade secrets and breach of confidentiality agreements by Altair and two former MSC employees who are currently executives at Altair.

Jurors found that Altair had misappropriated some source code as well as concepts or processes that are used to write the code from MSC, and that the employees had also violated one or more non-solicitation, confidentiality, or severance agreements with MSC.

According to the lawsuit, after Altair hired some former MSC Software employees, Altair began developing a software product called MotionSolve that competed directly with MSC’s Adams/Solver.

MSC had previously alleged that at least eight employees had left MSC between 2005 and 2007 and took jobs at Altair. Five of those employee claims were dismissed prior to trial.


SOLIDWORKS Mechanical Conceptual Hits the Market, But Does It Hit the Mark?

Thursday, April 10th, 2014

With surprisingly relatively little fanfare, DS SOLIDWORKS last week announced the availability of its long-awaited new product, Mechanical Conceptual (MC for short). Dassault Systemes says that MC is the first SOLIDWORKS application on the 3DEXPERIENCE platform — “that embraces the new realities of today’s world of design in the age of experience: it is more social and conceptual and delivers on the promise of ease-of-collaboration among key contributors.” All of this is something I’m still unclear exactly what it is, what it does, and what it means.

I contacted Kishore Boyalakuntla, Director, Product Management, SOLIDWORKS, who is in charge of managing Mechanical Conceptual for some clarification on what the press release announcing the launch lacked.

Mechanical Conceptual was formally introduced a few months ago at SOLIDWORKS World with the following four basic tenets — conceptual, social (collaboration), connected, and instinctive. The conceptual part I understand, because that’s the primary purpose of MC. It also lends itself to collaborative methods because it’s a cloud-based application, as well as instinctive, because it has direct modeling/editing capabilities. The connected part, though, especially to SOLIDWORKS is still a bit of a mystery. (more…)

LEDAS Geometry Comparison Technology Embeds ASCON C3D Kernel

Thursday, April 3rd, 2014

LEDAS Ltd. and ASCON recently announced the integration of ASCON’s C3D kernel into LEDAS Geometry Comparison technology. According to both companies, this is the first third-party component to benefit from the C3D kernel. Previously, third parties had only developed CAD/CAM software as applications on top of C3D.

Geometry Comparison software deals with the problem of detecting differences in 3D models within a specified tolerance.

LEDAS developed its Geometry Comparison technology to check and locate all of the differences between similar-looking geometric models. These changes can come about through:

  • revisions made to a model
  • from files generated by different CAD systems of the same model
  • the result of polygon and NURBS representations of the same geometry
  • data generated by various steps in the processing of 3D geometry.

When comparing two similar-looking 3D models, it is essential to distinguish between differences that are important and defects that are negligible. So this makes 3D model comparisons very different from a simple text comparison, where only text that is fully identical is considered as having no difference.

Making comparisons between 3D geometry requires operations performed at the most basic levels, and so are usually provided by 3D modeling kernels, of which C3D is an example. Geometry comparison is a component technology powered by C3D, and so this integration expands C3D’s sphere of application. The kernel is now being marketed as a general purpose tool for any engineering software needing advanced 3D modeling.

Until now, geometry comparison has been mostly done through Boolean subtraction operations, which is a core function of geometric kernels, such as Parasolid and ACIS. The difference between 3D bodies is found by subtracting the volume of one body from another.

3D geometry consists of two levels of geometry representation: topology (made of faces, edges, vertices), and underlying geometry (surfaces and curves that define the form of faces and edges). It is relatively easy to map topology of one 3D model to the topology of another model: each entity gets its counterpart, and if mapping for some entities does not exist, then the difference is found at the topological level. It is more complicated to find difference (or to check that there are no differences) when taking into account underlying geometry and specified tolerances. The solution developed by LEDAS makes it possible to detect differences at both the topological and geometric levels.

For those of us who have grown up with and seen the CAD industry evolve, it means experiencing CAD from a relatively narrow perspective, that is, a US perspective. As it turns out, the CAD development realm actually extends far beyond our shores, and is becoming more competitive over time. Some of the most noteworthy competitors are coming from Russia.

One of the more interesting CAD tools I’ve come across in the past few years is from Russia — ASCON’s KOMPAS-3D for associative 3D modeling. Models can be made from original designs, standard part libraries, or combination if the two. While that’s not especially unique, KOMPAS-3D’s parametric technology lets you generate ranges (different configurations) of products based on a single source model.

A distinguishing feature of KOMPAS-3D is that it uses its own modeling kernel and parametric system, both of which were developed at ASCON — something I have always considered an advantage over licensing components that form the basis of a CAD product.

The following video clip provides a brief overview of the KOMPAS 3D geometric modeling kernel:

KOMPAS 3D Modeling Kernel

What the video lacks in detail introduces the possibility that ASCON and its 3D modeling kernel could increasingly become a power to be reckoned with in the future.

A couple of years ago ASCON Group made public its proprietary geometry kernel, C3D, as the foundation for creating CAD systems and applications.

Development of the C3D kernel began in 1995, and became the basis for ASCON’s KOMPAS-3D in 2000. The company continued to update the kernel, and last year launched it as a separate product for the CAD component market. It can handle several aspects of a CAD system, icluding 2D drawing and sketching, 3D hybrid and solid modeling, parametric constraints, and translation.

The main feature of ASCON kernel is that it is comprehensive. The core of C3D combines just about everything necessary for developing engineering application software with modules that include:

  • C3D Modeler — the geometric modeler with functions for 3D solid and hybrid modeling, sketching, and 2D drawing.
  • C3D Solver — the parametric constraints solver with functions for creating and solving parametric constraints on 2D and 3D geometry.
  • C3D Converter — the translator module that reads and writes geometric models in all primary exchange formats.

Keep in mind, though, that the C3D kernel is not the only Russian kernel being developed there. There is also a Russian government-financed mandate to develop a “national” CAD engine, the Russian Geometry Kernel (RGK), a B-rep modeler that can create NURBS curves and surfaces. The RGK is being developed by Russian university mathematicians, and like the C3D modeler, it supports GPU acceleration and multi-threading.

The ultimate winner of the Russian kernel competition is anybody’s guess, but ASCON seems to have a number of technical things in place to make it a real player in the worldwide CAD arena. To a large extent, because it’s in control of its base product components, it may have better control over its destiny in a competitive market.

“We first became familiar with C3D when we began a joint project with ASCON aimed at integrating our LEDAS VDM (Variational Direct Modeling) technology into C3D and KOMPAS-3D,” said Ivan Rykov, CTO of LEDAS. “Our long experience in developing and using 3D modeling software makes it possible for us to easily identify the advantages and bottlenecks of any 3D modeling kernel. C3D made a really positive impression on us while we were testing it in our Geometric Comparison project, especially with regards to its stability and with the technical support from ASCON.”


Colortrac: LearnMore
TurboCAD pro : Start at $299

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise