Open side-bar Menu
 Jeff's MCAD Blogging

Archive for 2013

Mastercam Swiss Expert: Programming for Highly Precise Turned Parts

Thursday, February 28th, 2013

When it comes to machining, Swiss-style is quite a different animal because of the degree of precision and pace the process it is expected to maintain. Swiss-style lathes and turning centers provide extreme accuracy, capable of holding tolerances as small as ten thousandths of an inch.

A Swiss-style lathe holds the workpiece with both a collet and a guide bushing and is almost always used under CNC control. The collet sits behind the guide bushing, and the cutting tools are located in front of the guide bushing, holding stationary on the Z axis. To cut lengthwise along a part, the tools move in and the material itself moves back and forth along the Z axis. This allows all the work to be done on the material near the guide bushing where it is more rigid with little chance of deflection or vibration.

Swiss-style lathes and turning center are very efficient, as these machines are capable of fast cycle times, producing simple parts in one cycle with no need for a second machine to finish the part with secondary operations. This makes the Swiss style ideal for large production runs of small-diameter parts.

Additionally, as many Swiss lathes incorporate a secondary spindle, or sub-spindle, they also incorporate “live” tooling. Live tools are rotary cutting tools that are powered by a small motor independent of the spindle motor(s). Live tools increase the intricacy of components that can be manufactured by a Swiss lathe.

Spatial Corp. recently joined CNC Software Inc. in announcing that the 3D ACIS Modeler and 3D InterOp power the latest release of Mastercam Swiss Expert 2012. Designed to control a variety of Swiss-style NC machines, Mastercam Swiss Expert is used in a range of applications such as watch-making, medical device, dental, automotive, and electronics companies — all known for requiring extremely small, but very precise parts.

(more…)

Autodesk To Provide 3D Building Instructions for LEGO MINDSTORMS

Friday, February 22nd, 2013

OK, it’s almost spring and our minds turn to robots, as in the FIRST competition for middle and high school students and started by Dean Kamen several years ago. However, another branch of cool robotics for young people, as well as older guys like me, is LEGO MINDSTORMS.

We learned that Autodesk has partnered with The LEGO Group to provide 3D interactive building instructions for LEGO MINDSTORMS EV3, a new platform designed to introduce a younger generation to building and programming robots.

Accessible through a mobile app for iOS and Android devices, or over the web at MINDSTORMS.COM, the interactive building instructions—based on Autodesk Inventor Publisher technology—will provide an alternative to traditional 2D paper or online instructions. The 3D building instruction will let LEGO MINDSTORMS builders digitally view how the LEGO MINDSTORMS EV3 components fit together, making it easier to build some pretty sophisticated robots.

When building a LEGO MINDSTORMS robot you’ll be able to stop the animation, zoom in on a part or rotate it to see exactly how parts need to be fitted together. Additional features geared toward providing a positive experience for LEGO builders include double-tapping a part for component information, and a Map feature that will let you see exactly which part of the model is being worked on.

In case you’re not familiar, in addition to LEGO’s famous bricks, the LEGO MINDSTORMS EV3 set contains a multitude of parts—including motors, infrared sensors and a programmable microcomputer— for creating robots that walk, move or take whatever action they’re programmed to do. LEGO MINDSTORMS EV3 will include the 3D interactive building instructions for five different robots.

The LEGO MINDSTORMS EV3 set, as well as the 3D building instruction mobile apps and web instructions, will be available in the second half of 2013.

All in all, pretty cool stuff, and something I personally am looking forward to playing working with when it comes available because robots are a big part of the future of engineering and engineers.

Keyshot 4: Rendering Integration and Accuracy Are Keys to New Release

Tuesday, February 19th, 2013

Rendering has entered the mainstream of the product development process with this capability being part of many CAD applications. However, there is still plenty of room for specialized products that optimize rendering and take it to a higher level. One of our favorites is Keyshot from Luxion, who just announced KeyShot 4, the next generation of its rendering and animation package.

Luxion continues to develop its rendering technology to bring speed and improvements to KeyShot, making it an integral part of the product development process, from concept through sales and marketing.

KeyShot 4 adds new approaches to features and improved rendering enhancements that make KeyShot an accurate 3D rendering animation system for the product visual workflow.

The new “Live Linking'”capability lets Creo, SolidWorks, and Rhinoceros users maintain all part and feature updates made to their models without having to redo any of their work inside KeyShot. This capability requires a separate plugin that is available free of charge from the KeyShot website.

Keyshot 4 introduces a new method for applying physical lights, with the ability to turn any object in the scene into a point, area, or light source. Improved import options give you more flexibility when importing 3D geometry and the ability to work with the actual units of CAD software.

Check out the Keyshot 4 overview video presentation:

More material options come courtesy of a new partnership with Mold-tech, introducing accurate representations of Mold-Tech textures.

Improved algorithms provide more realism for subsurface light scattering within translucent materials.

KeyShot Pro users now have the ability to apply render layers to objects and create Model or View Sets to explore different configurations of product appearances, camera views, and environments. Pro users will also experience enhanced HDR editing capability with dynamic environment highlighting and options to tilt and blur HDRI’s. The KeyShot user interface now has  the ability to dock project, library, and animation windows. Optionally, models can now be viewed in full stereoscopic 3D on supported 3D monitors.

Increased control over the model and environment is provided with the ability to apply rounded edges to sharp corners, multi-select objects in the real-time window and create ground planes.
Speeding the time it takes to add detail to 3D geometry and reducing the files size of imported models has been addressed with the new Rounded edge feature. With this option, you can apply a small radius to sharp edges creating a more realistic look. This option is a a visual enhancement to the rendered graphics without increasing file size or render times.

KeyShot 4 pricing starts at $995. As with previous versions, animation capabilities can be added to KeyShot 4 for $500 and interactive KeyShotVR capabilities can be added for $1000.

We have watched Keyshot evolve and mature as one of the best rendering packages in the marketplace, regardless of price, and Keyshot 4 continues this positive evolution.

For more information: www.keyshot.com

ExactFlat Design Studio for SolidWorks: Designing With A Material Difference

Friday, February 15th, 2013
Continuing our quick looks at some of the unique exhibiting partners that we spoke with at SolidWorks World 2013, this time around we’ll briefly cover ExactFlat and its forthcoming flagship product — ExactFlat Design Studio.

The ExactFlat suite of software is designed for manufacturers working with fabrics and technical textiles. ExactFlat Design Studio for SolidWorks– the company’s newest product – is the first product to integrate the five essential steps of product development (design, flatten, pattern, nest, cost and document) inside SolidWorks.

Essentially, ExactFlat extends the 3D and 2D capabilities of SolidWorks for manufacturers producing sewn products such as automotive and transportation seating, furniture, apparel, marine, and architectural fabric structures.

“No one else can do this”, said Steven McLendon, Executive VP of ExactFlat. “By leveraging the power of a leading CAD platform like SolidWorks, and extending its capabilities to automate repetitive tasks, reduce manual processes and eliminate duplicate effort, innovative manufacturers are growing their businesses by getting 100% of the result with just 15% of the effort.”

After seven years of development and consulting with over 150 companies that work with industrial fabrics, ExactFlat provides a shift from manual to automated processes in the development of sewn products.

Check out the MCADCafe video interview with ExactFlat’s CEO, Eaton Donald.

Donald summed up the response to ExactFlat Design Studio at SolidWorks World by saying, “We are very encouraged by the strong customer and reseller interest and look forward to a highly productive and mutually beneficially relationship with SolidWorks. Sewn products are a large lucrative market. Moving fast and first to lock out the competition can lead to dominance and ownership of the segment. ExactFlat for SolidWorks seeks to achieve this position.”

When the shipping version of ExactFlat becomes available soon, we will be reviewing it running inside SolidWorks 2013. This promises to be an interesting evaluation because it will be a first for MCADCafe — designing, not with sheet metal or metal stock in mind, but fabric and textile materials.

MCOR Technologies: Using Paper to Print 3D Objects

Wednesday, February 13th, 2013

One of the favorite things I get to do when attending software conferences is meeting partners in the exhibitors’ hall and letting them show their stuff. At this year’s SolidWorks World I saw a number of things that caught my eye that I’ll feature in the coming weeks.

One of the more unique things I saw demoed this year was a printer that uses paper to print not in 2D, but in 3D. I know, 3D printing with paper brings back funky memories of 3D paper printers of the past, so I’ll admit I was a bit skeptical when I came by the booth.

I spoke with Dr. Conor MacCormack, Mcor’s co-founder & CEO about his company’s technology and strategy. Although the company was established in 2004, the Mcor IRIS 3D color printer was introduced to an American audience for the first time at SolidWorks World.

These 3D printers are unique in that they use ordinary 8.5″ x 11″ letter paper as the build material that renders surprisingly durable, stable, and tactile models — in color.

The relatively low-cost, eco-friendly Mcor IRIS first came on the market in December 2012. According to the company it can print more than one million colors simultaneously as it creates durable, photo-realistic physical objects from 3D data.

Mcor takes its unique “TRUE Color” capability a big step forward by rendering color as rich and vibrant just as it displays on a computer screen. That’s because the build material is paper, the original and natural medium for colored ink. In addition to offering this color capability, the IRIS delivers a relatively low operating cost for a 3D printer that I’d consider commercial class — owing to its use of paper as its build material.

Raw parts that I saw and handled right out of the machine had a good quality finish that could be further finished with a liquid sealant available from the company.

To make its technology available to a wider potential customer base, Mcor recently struck a deal with Staples Printing Systems Division to launch a new 3D printing service called “Staples Easy 3D,” online via the Staples Office Center. Staples’ Easy 3D will provide consumers, product designers, architects, healthcare professionals, educators, students and others with low-cost, colored, photo-realistic 3D printed products from Staples stores. Customers will upload digital files to the Staples Office Center and pick up the models in nearby Staples stores, or have them shipped. Staples will produce the models with the Mcor IRIS, the machine that was exhibited at SolidWorks World.

As to where the IRIS fits in with other higher resolution 3D printers, Dr. MacCormack said it would provide a complementary role. That’s fair, but I think it could also fit in many design environments in a standalone capacity, depending on the quality and functional requirements.

Forgive the bad pun, but seeing is believing with the Mcor IRIS 3D printer. It’s a fresh look on 3D printing with paper.

See the interview with Mcor’s Dr. MacCormack that we conducted at SolidWorks World.

Cost Management Moves Up-Front in Design Process with SolidWorks 2013

Thursday, February 7th, 2013

Something I considered to be the “sleeper” capability in SolidWorks 2012 was Costing because of its potential impact the top and bottom lines, as well as an engineering tool that upper management could understand and appreciate. It’s gotten better and more comprehensive for 2013. Automatic cost estimation estimates part manufacturing costs using built-in cost templates. These manufacturing templates are customizable, allowing entry of specific manufacturing costs and data, such as material, labor, machine speed and feeds, and setup costs.

Cost management or costing is a process for planning, managing, and controlling the costs of doing business. Ideally, product design projects should have customized costing plans and companies as a whole should integrate costing into their business models. When properly implemented, costing translates into reduced costs for products and services, as well as increased value being delivered to the customer.

Taking this approach to costing helps a company determine whether they accurately estimated expenses initially, and will help to more closely predict expenses in the future. However, costing cannot be used in isolation – projects must be organized and conducted with costing as a vital part of an overall business strategy.

Using SolidWorks Costing, designers can automatically calculate manufacturing cost estimates to ensure they are within design cost goals, and manufacturers can instantly create detailed quotes that are accurate to their specific manufacturing costs and processes. SolidWorks Costing works directly from 3D models – no pre-processing of the models is required. As a design is created, manufacturing costs are automatically calculated allowing designers to always have a current and accurate cost estimate.

A project that is defined through costing will facilitate effective management of the costs it incurs. Effective costing strategies will help deliver a high quality product within a predetermined budget, as well as making it more valuable to the customer.

SolidWorks Costing lets more people in your organization become engaged in reducing product cost while maintaining product quality. It provides a method for establishing and monitoring cost priorities. It improves both bottom line (cost reduction) and top line (increasing sales through higher quality products). Costing is part of an overall business solution that maximizes profits and product quality.

 
Although it got a relatively slow start, I’m starting to see Costing used earlier in and a true part of the product development process, much like up-front simulation was in the beginning.

SolidWorks Costing is a tool for getting more people to think about both material and process costs from different perspectives. Engineering personnel can leverage costing/cost reduction knowledge and pass it along to others within an organization, so costing is repeatable and becomes a vital aspect of overall corporate culture.

SolidWorks Mechanical Conceptual Debuts

Tuesday, February 5th, 2013

 

One of the most eagerly anticipated new product announcements at SolidWorks World 2013 was the SolidWorks “conceptual” application that was eluded to last fall. This announcement was supposed to be one of the highlights of Day 1 of SolidWorks World, but I felt it fell kind of flat. What was presented was SolidWorks Mechanical Conceptual. Quite a mouthful, isn’t it?

From its name, I’m sure you can guess that SolidWorks Mechanical Conceptual is a conceptual tool for mechanical design that complements SolidWorks for design refinement. It is the first SolidWorks product based on Dassault Systemes’ 3DEXPERIENCE platform, something I’m still trying to comprehend – is it a file format, family of products, design philosophy – I don’t really know.

Start the video at 45:00 minutes where the SolidWorks Mechanical Conceptual presentation begins with the introduction of Fielder Hiss, SolidWorks’ VP Product Management.

SolidWorks Mechanical Conceptual merges history, parametrics, and direct editing into a single interface. Why is this a big deal? As a concept evolves, you can make any change necessary to a design while respecting the design intent that was previously created. The so-called Single Modeling Environment lets you evolve from layout sketches to 3D geometry, to separate parts and assemblies, without taking product structure into consideration. Now this is interesting, but not unique to the industry.

As a 3D concept matures, you can use motion simulation to examine the interaction of parts and identify and addess critical design issues early on, before moving on to detail design in SolidWorks.

Since SolidWorks Mechanical Conceptual is cloud based, it is always connected to a design database, as well as to other users.  In theory, this provides the ability to secure data, prevent data loss from crashes, and automatically save iterations of concepts. I’m still on the fence on this whole cloud-based thing, but it seems to be inevitable.

Production testing is due to begin in May with general availability coming in October or November of this year.

Unlike most other products introduced at past SolidWorks Worlds, the applause for SolidWorks Mechanical Conceptual wasn’t exactly thunderous. If anything, it was polite, but not much more.

I’m reserving major judgment on SolidWorks Mechanical Conceptual until it comes out and I can personally check it out, but I am hoping that it proves to offer more of real value than was demonstrated at its coming out party in Orlando.

Was I expecting too much? Maybe, but so was much of the audience.

Flying Robots Swarm SolidWorks World 2013

Friday, February 1st, 2013

The general sessions on the second morning of SolidWorks World 2013 were all about robots – flying robots. Two expert designers discovering new approaches to human/robot interaction and behavior shared their unique experiences. Last time we featured Festo’s SmartBird that flew over the audience.

Earlier that same morning, Dr. Vijay Kumar, professor at the University of Pennsylvania, showcased the potential of agile aerial robots flying in a swarm.

Dr. Kumar’s Scalable sWarms of Autonomous Robots and Mobile Sensors (SWARMS) project brings together experts in artificial intelligence, control theory, robotics, systems engineering and biology, attempting to understand swarming behaviors in nature and applications of biologically-inspired models of swarm behaviors to large networked groups of autonomous vehicles.

Video highlights of Dr. Kumar’s presentation include (minutes into the video):

12:00    20 robots flying in formation

13:00    Flying robots collaborating to carry payloads

14:00    Flying robots collaborating and building a structure

19:45    A swarm of flying robots play the James Bond theme song

The project attempts to answer such questions as:

  • Can large numbers of autonomously functioning vehicles be reliably deployed in the form of a “swarm” to carry out a prescribed mission and to respond as a group to high-level management commands?
  • Can such a group successfully function in a potentially hostile environment, without a designated leader, with limited communications between its members, and/or with different and potentially dynamically changing “roles” for its members?
  • What can we learn about how to organize these teams from biological groupings such as insect swarms, bird flocks, and fish schools?
  • Is there a hierarchy of “compatible” models appropriate to swarming/schooling/flocking which is rich enough to explain these behaviors at various “resolutions” ranging from aggregate characterizations of emergent behavior to detailed descriptions which model individual vehicle dynamics?

According to Dr. Kumar, for collaborative swarming to work, three conditions must be met:

  1. Must have the ability to sense local information
  2. Must have ability to act independently
  3. Must have ability to perform anonymously, agnostic to who or what is next to you in performing a collaborative task

Dr. Kumar said the main goal of the project is to develop a framework and methodology for analyzing swarming behavior in biology and the synthesizing bio-inspired swarming behavior for engineered systems. During his presentation Dr. Kumar demonstrated some amazing things with amazing possibilities courtesy of his aerial robot swarms.

Attempting to find answers to some very complex problems by bringing together a wide variety of experts is what makes science and engineering fascinating and provides compelling reasons to get involved with the design and engineering community.

These two presentations on aerial robotics were among the highest of highlights for me at SolidWorks World 2013 – very entertaining and inspiring.

Bionic Seagull, SmartBird, Soars at SolidWorks World 2013

Monday, January 28th, 2013

The MCADCafe crew  just returned from SolidWorks World 2013 in Orlando. During the conference we saw, heard, and experienced many interesting things, but one of the most intriguing was SmartBird, from automation technology supplier, Festo.

Toward the end of the second day’s general session at SolidWorks World, Elias Knubben, Head of Corporate Bionic Projects at Festo took the stage to discuss the work his group does at Festo. One of the projects he discussed was SmartBird, a radio-controlled ultralight flight model with excellent aerodynamic qualities and extreme agility for a robotic “bird.”

He gave a good presentation on the project, but the exciting part was when an actual working model was brought on stage and sent soaring over the crowd. It flew several times around the auditorium and came to rest when the controller steered SmartBird back toward the stage into Elias’ outstretched arms — he caught it in mid-air to end the flight.

This bionic/robotic “bird” was inspired by the herring gull, and can start, fly, and land autonomously – with no additional drive mechanism. Its wings not only beat up and down, but also twist at specific angles for specific flight characteristics. This is achieved with an active articulated torsional drive unit, which in combination with a complex control system attains a high level of efficiency during flight operations. In other words, Festo has succeeded in creating an energy-efficient technical adaptation of a flight model from nature.

With SmartBird, Festo has deciphered the flight of birds – an age-old dream realized that I along with the rest of the audience found fascinating.

MechSpot.com Launches On January 28, 2013!

Wednesday, January 23rd, 2013

Are you actively involved with or just plain interested in the mechanical design workflow from concept through manufacturing? If you are, then make MechSpot.com your electro-mechanical resource and community.

MechSpot.com is a new, innovative, and unique online community that is building a collaborative knowledge base for mechanical design and engineering.

Anyone is welcome to join the MechSpot.com community – students, schools, educators, professionals, companies, organizations, DIYers, hobbyists, and enthusiasts.

Receive the benefits of Mechspot membership including peer feedback, unlimited uploads and downloads, a growing creative collaborative community, streaming video, news, jobs, your own customizable portfolio, and much more!

Why should you join MechSpot.com?” Just some of the compelling reasons include:

  • A home page where we’ll feature your latest uploads, your new products, trial software, press releases, job offerings, and more. We will feature this mix of content on the home page (e-newsletter) from all of our users.
  • Showcasing your design work in your own Gallery, as well as in your own personalized Portfolio.
  • Your username becomes a MechSpot URL extension that takes visitors directly to your Gallery and Portfolio. (http://MechSpot.ibsystems.com/<your username>).
  • Learning about and trying out the latest design software with free downloads.
  • Uploading and displaying your own content to help others, as well as to making a unique personal statement.
  • Reaching an expanding audience, since MechSpot is the only digital community devoted solely to mechanical engineering and manufacturing.
  • “Follow” other members and you’ll be notified each time a member uploads material to the site. Your “Followers” and the members that you are Following are displayed in your Gallery and Portfolio.
  • Making any upload one of your “Favorites” for display in your Gallery and Portfolio.
  • Giving and receiving valuable feedback, comments, and ratings on others’ work and products.
  • Building your draft presence with up to 10 provided uploads and providing you with training so you’ll be able to maintain your presence effectively on your own. (We also offer an optional maintenance package where you tell us what assets you’d like presented, and we’ll do the work for you.
  • Participating in the site’s lively community-based forum.
  • Finding or posting a job using MechSpot’s job matching service.

Your unique URL will be www.mechspot.com/CompannyName (This is your login name – just like it is on Facebook and YouTube.). Mechspot will replace your YouTube and Facebook pages, because it’s just more effective for reaching your audience.

For example, YouTube only allows you to upload and present videos, and these video pages contain advertisements. Mechspot, on the other hand, has no advertisements and allows you to present a wide range of digital content. This ability lets you tell an entire story with videos that present company and product overviews, success stories, tutorials, etc. You can supplement your story with white papers, brochures, specifications, and other collateral material, show off your visualizations, and offer trial software for download.

As a second example, Facebook uses your page, which you pay them to advertise, to place their advertisements on, and of course, doesn’t offer any of the wide range of digital content placement that we do.

Both of these social sites, by their nature, have general audiences and are not targeted toward the mechanical engineering and manufacturing groups you want to reach.

MechSpot.com is absolutely free to sign up for and use. Everything on the site is 100% free to view and download.

MechSpot.com’s official launch date is January 28, 2013, but you can become a member right now. After the site launches, additional functionality will continually be added, including enhanced social connectivity, mobile apps (For Apple, Android, and Windows), and a member-customizable newsletter. And that’s only the beginning – MechSpot.com is a dynamic community that will grow along with you.

Sign up and come join us today!

We hope to see you online!

Explore & Learn with us!

TurboCAD pro : Limited Time offer
MasterCAM



Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise