Open side-bar Menu
 Jeff's MCAD Blogging

Archive for June, 2012

MCADCafe e-Magazine: Solid Edge ST5 Released

Monday, June 25th, 2012

Siemens PLM Software, a business unit of the Siemens Industry Automation Division and a leading global provider of product lifecycle management (PLM) software and services, announced the release of Solid Edge ST5, with advances in core design capabilities aimed at helping users develop better products faster. The latest Solid Edge release also contains more than 1,300 new customer-driven productivity enhancements.

Siemens PLM Software also announced Solid Edge Mobile Viewer, a new free 3D viewer mobile device application (app) for the iPad portable digital device, which broadens access to design data to help companies enhance collaboration. The announcements were made at Siemens PLM Software’s Solid Edge University 2012

“The new features in Solid Edge ST5 are driven by our strong focus on our customers’ requirements. By responding directly to their needs, we ensure each functional enhancement delivers real business value,” said Dan Staples, director of Solid Edge product development, Siemens PLM Software. “Customers are seeing real benefits from our industry-leading synchronous technology and we’ve strongly extended our lead in this area.”

Faster more flexible ways to use synchronous technology

Solid Edge continues to leverage synchronous technology, Siemens PLM Software’s breakthrough history-free, feature-based design technology for digital product development, to provide designers and engineers a better way to create and edit designs and to help cut design time by enabling reuse of imported models. Solid Edge ST5 uses synchronous technology to provide enhanced support for multi-body modeling, which lets users import parts and assemblies from virtually any CAD system. The resulting imported geometry can be combined into a single part or multiple parts depending on manufacturing requirements.

“I am very impressed with what I have seen in Solid Edge ST5; especially the new multi-body design capability,” said Grant Holohan, Mechanical Engineer, Hatch, a leading global EPCM company specializing in designing large-scale mining operations. “The new multi-body design capability gives us the freedom to design without worrying about individual parts unless needed. Using Solid Edge ST5 will dramatically increase the design productivity of our staff, saving a substantial amount of design time.”

Continues to simplify drawing documentation

In many design and manufacturing companies, drawings are a key deliverable. Solid Edge enhancements continue to focus on drawing productivity to help lower shop floor errors. Enhancements in Solid Edge ST5 include the ability to show an assembly in multiple positions within a drawing view, to automatically place parts lists across sheets, and easily align the position of dimensions. A new marquee feature is the ability to create nailboards of electrical wiring harnesses, complete with flattened and “bend” views, drawing views of connectors, and connector and conductor tables for creating complete manufacturing documentation.

Delivers thermal analysis for steady-state simulations

Engineers often need to simulate both thermal and mechanical systems where a part may have to undergo both stress and a thermal load. And when issues are encountered, they require a fast, easy approach to making changes that improve design quality. Solid Edge ST5 now includes steady-state thermal simulation and when coupled with synchronous technology users can test more alternatives in less time, so designers can reduce the need to build and test physical prototypes.

Solid Edge Mobile Viewer App for the iPad

Users across a company now have the ability to view 3D parts and assemblies created with Solid Edge using the new free Solid Edge Mobile Viewer app on an iPad. The app includes the ability to rotate, pan, zoom, show and hide parts, create and email images. Solid Edge Mobile Viewer allows individuals outside of the traditional design and engineering departments to view design data, enabling faster, more convenient design reviews, customer presentations, or general model inspection.

Solid Edge ST5 is scheduled to ship in July. For more information please visit


Commentary By Jeffrey Rowe, Editor

With ST5 the Synchronous Technology saga continues . . .

Starting about four years ago, one of biggest mechanical CAD software developments then arguably was Synchronous Technology (ST) that found its way into both Solid Edge and its big brother, NX. Given that it was a “Version 1” of the technology, it was stable, but was not implemented through all design environments within the Solid Edge product. That, however, has been addressed over time, and continues to be increasingly implemented throughout in new releases.

In 2008, Siemens PLM Software announced a new CAD methodology that it claimed to be the biggest MCAD breakthrough in a decade called Synchronous Technology. That was a pretty big claim, but the possibilities and implications were pretty intriguing.


Tata Technologies Uses Dassault’s 3DEXPERIENCE Platform for Electric Vehicle Feasibility Study

Friday, June 15th, 2012

I guess it’s just me, but I’m still trying to get used to Dassault calling itself the 3DEXPERIENCE Company with a 3DEXPERIENCE Platform that consists of all of of its product lines. To its credit, though, Dassault recently announced a tangible result with Tata Technologies’  use of its 3DEXPERIENCE platform, based on V6 technology, for developing the small urban electric vehicle study – the eMO (for electric MObility).

Dassault’s 3DEXPERIENCE Platform

The eMO study was undertaken to demonstrate the feasibility of developing an electric vehicle at an affordable price. Tata Technologies says that the 3DEXPERIENCE Platform enabled its team to complete the project quickly and accurately.

“We needed a highly regarded partner for this project, as we were relying on it to showcase our multi-dimensional approach to vehicle engineering and development,” said Kevin Fisher, president, Tata Technologies Vehicle Programs and Development (VPD) Group. “We have a deep history with Dassault Systèmes and were confident that CATIA and ENOVIA V6 applications would help us leverage the talents of a global engineering team to meet numerous design and cost constraints, as well as create the targeted user experience, including a final vehicle price tag of under $20,000.”

A significant challenge in the development process was the requirement to fit all the required vehicle systems into a small footprint while maintaining spacious seating for four adults. To achieve this, Tata Technologies used CATIA and ENOVIA to develop various studies, allowing global collaboration to rapidly evaluate and optimize possible solutions.

The development of the eMO was a global effort, requiring collaboration among more than 300 Tata Technologies engineers from the U.S., Europe, and India. The data generated by the 3DEXPERIENCE Platform became the common language for collaboration and allowed rapid comparison of proposals, leading to swift decisions and innovative solutions. In addition, it allowed more time for testing of different design features aimed at reducing energy consumption, such as vehicle weight, rolling resistance and aerodynamics.

Not a lot of details were given, which is sort of understandable for a feasibility study, but is tangible proof that Dassault’s 3DEXPERIENCE Platform is being used for real work. It will be interesting to see how eMO evolves and where it goes.

MCADCafe e-Magazine: PTC’s CEO Jim Heppelmann Declares New Era of Manufacturing Competitiveness at PlanetPTC Live 2012

Thursday, June 14th, 2012

At its annual worldwide gathering of customers, PlanetPTC Live in Orlando, Florida, PTC declared a new era of manufacturing competitiveness driven by technology solutions that help companies achieve product and service advantage. In his keynote address, PTC president and CEO Jim Heppelmann argued that the world is poised to enter what The Economist magazine recently labeled a “third industrial revolution.” In this new era, a concerted focus on strategy will lead a renaissance in global manufacturing which will, in turn, put companies using PTC technology solutions in increasingly important roles helping create new value for their companies, and helping them achieve a competitive edge in the 21st Century.

“Over the past few decades, global manufacturers have made massive investments in technology and process change aimed at improving operational efficiency,” said Heppelmann. “Today, however, we are reaching the limits of the competitive edge these investments can deliver. Manufacturers need to be operationally efficient to stay in the game, but they can no longer achieve meaningful advantage from that alone. The time has come for a new source of competitive advantage – product and service advantage – from technology and process change that improves strategy decision-making across the enterprise, from engineering to the supply chain to sales and service networks.”

Fundamentally, PTC technology solutions transform the way companies create and service products by enabling them to make better, smarter, faster strategy and planning decisions. These decisions relate to how products are designed and engineered, how a supply chain is optimized, how quality and compliance is assured throughout the manufacturing process and, ultimately, how service is efficiently delivered against a product once sold. Individually, these planning decisions help deliver a strategy that supports a brand. Collectively, they are the new source of competitive advantage.

Over its 25 year history, PTC has developed a deep expertise in helping companies optimize the processes associated with each stage of the product lifecycle. In recent years, through a combination of organic development and acquisition, PTC has built a broad portfolio of technology solutions that it combines with its process expertise to assist customers in achieving greatness. In 2012, PTC has gone one step further and reorganized the company itself to align directly with the organizational structure of the modern manufacturing enterprise. Specifically, PTC has established five internal leadership teams focused on driving its technology solution strategies in the areas of product lifecycle management (PLM), computer-aided design (CAD), application lifecycle management (ALM), supply chain management (SCM), and service lifecycle management (SLM).

“A new era is upon us,” concluded Heppelmann. “To win in the new century requires a new way of thinking. For manufacturers, it’s about making fundamentally smarter strategy decisions. Today, advantage goes to those who differentiate their product and service offering, and PTC is proud to align itself with leading global brands that are poised to win in the new competitive era by achieving product and service advantage.”


Commentary By Jeffrey Rowe, Editor

Along with about 2,000 other attendees, we just returned from PlanetPTC Live 2012.

It was a good conference with a different “vibe” than in past years – more confident, forthcoming, and upbeat. I don’t know if it was the recent management changes that made the difference, but it was evident that the era of the “new PTC” has begun.


SpaceX Cuts Composite Development Time With Siemens’ Fibersim

Friday, June 1st, 2012

The privately funded and developed SpaceX Dragon just returned from a flight that was successful from start to finish. The SpaceX Dragon capsule parachuted into the Pacific on May 31, 2012 to conclude the first private delivery to the International Space Station and ring in a new era for NASA’s approach to space exploration.

SpaceX’s CEO/CTO, Elon Musk, said “Welcome home, baby,” and was said to be a bit surprised with the SpaceX Dragon’s triumphant mission.

After its initial success, the primary goal for SpaceX will be to repeat the success on future flights.

Because the unmanned supply ship’s arrival was so accurate, when it splashed down, a fleet of recovery ships was able to quickly move in to pull the capsule aboard a barge for towing to Los Angeles.

It was the first time since the shuttles stopped flying last summer that NASA got a sizable load returned from the space station – more than half a ton of experiments and equipment.

The arrival of the world’s first commercial cargo carrier concluded a nine-day test flight that was virtually flawless, beginning with the May 22, 2012 launch aboard the SpaceX company’s Falcon 9 rocket from Cape Canaveral, continuing with the space station docking three days later, and departure six hours before landing in the ocean.

SpaceX attributes a large part of its design and engineering success to CAD, CAM, and CAE software, including Fibersim from Siemens PLM Software for composite material design and engineering.

According to Chris Thompson, Vice President of Structures Engineering at SpaceX, “Time is always of the essence for us, so Fibersim’s proven ability to take us from art to part so rapidly was a critical consideration in our decision to purchase the software. Fibersim improves product quality by providing accurate engineering information to the manufacturing floor, which also helps the repeatability of the manufacturing process.” The repeatability of the manufacturing process is vital for repeated success of the space platform.


Adopting Advanced Composite Materials

For more than 50 years, commercial access to space has been limited by the high cost of flight operations. However, Space Exploration Technologies Corp. (SpaceX) has rewritten the rules of the game by adopting a new business model and cutting edge technologies to enhance reliability and reduce the cost of space access.

One significant way SpaceX enhanced the performance of its Falcon rocket and Dragon capsule was by adopting composite materials. Composites have received growing acceptance in a variety of industries, including aerospace, and the space industry has taken note. SpaceX was no exception. The design team recognized that composites could significantly enhance performance by improving the strength-to-weight ratio of the materials used to construct its spacecraft.

Once that decision was made, SpaceX conducted an evaluation of available composites engineering solutions and concluded that Siemens PLM Software’s Fibersim software was the best fit for its design and manufacturing environment.

“Based on our comparison, there was no question that Fibersim was definitely the best choice on the market for designing and manufacturing composite components to suit our needs,” said Kirk Matthes, SpaceX’s design manager.

SpaceX’s business model is derived from the philosophy that simplicity, so low-cost and reliability can go hand in hand. By eliminating the traditional layers of management and subcontractors, the company reduced costs while speeding decision making and delivery. Likewise, by keeping the vast majority of manufacturing in-house, SpaceX reduced costs, kept tighter control of quality, and ensured a tight feedback loop between the design and manufacturing teams. By concentrating on simple, proven designs with a primary focus on reliability, the company has reduced the costs associated with complex systems operating at the margin. Fibersim has proven very valuable within that design/engineering paradigm.

SpaceX used Fibersim to design and manufacture a variety of composite parts on both the Falcon rocket and the Dragon capsule. Fibersim was used to develop production fiber placement diagrams and laser projection files. It was also used to assist with actual fiber placement for the spacecraft’s thermal protection system, including the heat shield, exterior panels, insulating layers on the rocket and spacecraft, and several panels around the nose cone and engines.

Fibersim is now being employed from the outset on all new composites projects and has enabled SpaceX to reduce the design-to-manufacturing time on composite parts, such as the 5-meter fairing boattail panel by 71 percent, from seven days to two days. For other designs, the generation of manufacturing data was reduced by as much as 86 percent, from seven days to one day, using Fibersim. These time savings mean that changes are processed more quickly, designs are updated more reliably, and the overall process flows more smoothly.

SpaceX has used Fibersim to perform a variety of tasks, including creating designs, making flat patterns, working in conjunction with its finite element analysis (FEA) software, and creating laser data.


Strong Support From Siemens

As a newcomer to composites, SpaceX was also concerned about finding a software vendor that had significant composites experience so it could receive the necessary guidance and support as it embarked on working with new materials.

“Siemens PLM Software’s support is excellent,” said Matthes. “Anytime we have a problem, we can send a model to the Siemens PLM Software’s technical consultant and he helps us get through the issue. Again, as a fast-paced organization, we must continually be moving forward, and Siemens PLM Software’s responsiveness and expertise enables us to do just that.”

Siemens PLM Software also embeds the know-how derived from its years of experience in the composites industry to provide intuitive, easy-to-use features for the design of a variety of composite structures. This is integrated into the software, speeds learning time, and makes the learning experience for new users more effective. This also aids in training new users who may not have experience in designing with composite materials.

Since most of the composite parts are not especially complicated, the Fibersim Composites Engineering Environment (CEE) has proven to be sufficient. However, certain sections of the launch vehicle are characterized by complex curvature, so SpaceX opted for Siemens PLM Software’s Advanced Composites Engineering Environment (ACEE) to design those parts. ACEE exploits the inherent advantages of many different composite design methodologies –including structure-based, zone-based, and ply-based design — to enable efficient engineering of large, complex structural components and highly contoured composite skins.

Most importantly, it helps to address the changes that inevitably occur while developing a composite structure. Based upon inputs from analysis, manufacturing or further iterations of the design, the definition evolves to its final state. This can require frequent updates and changes, which are time-consuming without software created specifically for this process. ACEE is designed to meet this challenge and create a more straightforward process for managing design changes.

“ACEE provided a significant boost to our efforts to define or import laminate specifications and requirements quickly using a zone-based design methodology,” explained Matthes. “It helped speed ply definition by dynamically generating zone transitions and ply boundaries using an offset profile.”

The ability to accelerate the process and make it more accurate enables SpaceX to proceed with high speed and quality, as well set new standards for designing and manufacturing composite spacecraft both now and in the future.

As a kid who grew up during NASA’s heyday in the 60s and 70s and the more recent hiatus, I’m now very encouraged about the future of space exploration – due in large part to private enterprise — and I applaud the efforts of SpaceX. I hope SpaceX’s accomplishment ushers in a new wave of engineers, scientists, and entrepreneurial companies who will take advantage of this great opportunity.


Colortrac: LearnMore
TurboCAD pro : Limited Time offer

Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise