Open side-bar Menu
 Jeff's MCAD Blogging
Jeff Rowe
Jeff Rowe
Jeffrey Rowe has almost 40 years of experience in all aspects of industrial design, mechanical engineering, and manufacturing. On the publishing side, he has written well over 1,000 articles for CAD, CAM, CAE, and other technical publications, as well as consulting in many capacities in the design … More »

Virtual Prototyping and Manufacturing Simulation – Obstacles To Acceptance

 
January 20th, 2012 by Jeff Rowe

Like all aspects of the product development process, to justify its existence, simulation and test productivity are becoming an evermore pressing issue. Vendors say that in many cases, customers are demanding significant tangible proof of ROI in months, not years.

A major obstacle to wider acceptance of virtual prototyping and manufacturing simulation is a persisting lack of interoperability between CAD, CAM, and digital prototyping in the bigger PLM scenario. In this context, working toward data interoperability is not regarded as a value-added activity. Overall, however, one of the primary goals of digital test and simulation is to make the overall engineering activity sequence more of a value center and less of a cost center. Another goal is the ability to simulate the entire product lifecycle – from concept through production through sustainment to retirement.

Integrating the analytical, virtual, and physical is disruptive and is an obstacle to acceptance because the integration forces people to work differently than they had done previously. This integration only works through evolutionary implementation, and not necessarily everything all at once.

Many of the digital prototyping tools are still too difficult to use, and vendors need to pay more attention to ease of learning/use. Ease of use is important because vendors, even Tier 1 automotive suppliers, with their low margins cannot afford to hire and employ Ph.D.s to run their digital prototyping software.

On the other hand and in their defense, though, these same vendors are not interested in simplifying (“dumbing-down”) their software so much that they can solve only relatively simple problems. This is a big issue, and one that is even bigger than CAD, where ease of learning/use have made great strides for most vendors the past couple of years. Conversely, many vendors feel that the legacy workforce is not well-suited or qualified for the digital prototyping tools available today.

One way to address the ease of use issue is to provide a scaleable user interface on test/analysis applications to suit different user needs and skill levels at different times.This is tough to address because it requires flexibility and adaptability.

Finally, there is the trust factor that can be an obstacle. In the simulation/test arena, there is an adage that roughly goes, “Everyone trusts test results except test engineers, and everyone trusts analysis results except analysts.” Just about everyone agrees, however, that even with the best digital methods, physical testing will never go away.

The decision of whether to use physical versus digital prototyping is a delicate balance of tradeoffs. In fact, many companies employ virtual testing and simulation as a decision-making tool for conducting physical testing.

So how will digital prototyping ultimately succeed? It’s not hardware or software that makes or breaks digital prototyping, it’s people. While great people can overcome marginal or bad hardware and software, marginal people can cause the best hardware and software to fail. In this context, digital prototyping is no different than any other technical endeavor with regard to the absolute importance of the “people factor” for success.

Related posts:

Tags: , , , ,

One Response to “Virtual Prototyping and Manufacturing Simulation – Obstacles To Acceptance”

  1. MP Divakar says:

    While I agree with most of your points, I would like to take exception to the fact the tools are still too complicated to use. I qualifiy as one of the “PhD” types and I think the tools are already dumbed-down too much. I have run engineering teams big and small (the last one was 60 people!) and many of my co-workers have had hours of preaching from me for reporting something the program spits out without understanding the details.

    I would also like to add another point: even with the progress made in speed of many-core processing hardware and ease of use in software, the performance of these systems leaves much to be desired. The real value of v-prototyping lies in providing real time decision making features as one iterates with design. To do this with multiple physics in real time is still a dream!

Leave a Reply

Your email address will not be published. Required fields are marked *


*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>




Internet Business Systems © 2016 Internet Business Systems, Inc.
595 Millich Dr., Suite 216, Campbell, CA 95008
+1 (408)-337-6870 — Contact Us, or visit our other sites:
TechJobsCafe - Technical Jobs and Resumes EDACafe - Electronic Design Automation GISCafe - Geographical Information Services  MCADCafe - Mechanical Design and Engineering ShareCG - Share Computer Graphic (CG) Animation, 3D Art and 3D Models
  Privacy Policy Advertise